1ed1: Difference between revisions

No edit summary
No edit summary
 
Line 3: Line 3:
<StructureSection load='1ed1' size='340' side='right'caption='[[1ed1]], [[Resolution|resolution]] 2.10&Aring;' scene=''>
<StructureSection load='1ed1' size='340' side='right'caption='[[1ed1]], [[Resolution|resolution]] 2.10&Aring;' scene=''>
== Structural highlights ==
== Structural highlights ==
<table><tr><td colspan='2'>[[1ed1]] is a 1 chain structure with sequence from [http://en.wikipedia.org/wiki/Simian_immunodeficiency_virus_-_mac Simian immunodeficiency virus - mac]. Full crystallographic information is available from [http://oca.weizmann.ac.il/oca-bin/ocashort?id=1ED1 OCA]. For a <b>guided tour on the structure components</b> use [http://proteopedia.org/fgij/fg.htm?mol=1ED1 FirstGlance]. <br>
<table><tr><td colspan='2'>[[1ed1]] is a 1 chain structure with sequence from [https://en.wikipedia.org/wiki/Simian_immunodeficiency_virus_-_mac Simian immunodeficiency virus - mac]. Full crystallographic information is available from [http://oca.weizmann.ac.il/oca-bin/ocashort?id=1ED1 OCA]. For a <b>guided tour on the structure components</b> use [https://proteopedia.org/fgij/fg.htm?mol=1ED1 FirstGlance]. <br>
</td></tr><tr id='ligand'><td class="sblockLbl"><b>[[Ligand|Ligands:]]</b></td><td class="sblockDat" id="ligandDat"><scene name='pdbligand=IPA:ISOPROPYL+ALCOHOL'>IPA</scene></td></tr>
</td></tr><tr id='method'><td class="sblockLbl"><b>[[Empirical_models|Method:]]</b></td><td class="sblockDat" id="methodDat">X-ray diffraction, [[Resolution|Resolution]] 2.1&#8491;</td></tr>
<tr id='related'><td class="sblockLbl"><b>[[Related_structure|Related:]]</b></td><td class="sblockDat">[[1ecw|1ecw]]</td></tr>
<tr id='ligand'><td class="sblockLbl"><b>[[Ligand|Ligands:]]</b></td><td class="sblockDat" id="ligandDat"><scene name='pdbligand=IPA:ISOPROPYL+ALCOHOL'>IPA</scene></td></tr>
<tr id='gene'><td class="sblockLbl"><b>[[Gene|Gene:]]</b></td><td class="sblockDat">GAG ([http://www.ncbi.nlm.nih.gov/Taxonomy/Browser/wwwtax.cgi?mode=Info&srchmode=5&id=11711 Simian immunodeficiency virus - mac])</td></tr>
<tr id='resources'><td class="sblockLbl"><b>Resources:</b></td><td class="sblockDat"><span class='plainlinks'>[https://proteopedia.org/fgij/fg.htm?mol=1ed1 FirstGlance], [http://oca.weizmann.ac.il/oca-bin/ocaids?id=1ed1 OCA], [https://pdbe.org/1ed1 PDBe], [https://www.rcsb.org/pdb/explore.do?structureId=1ed1 RCSB], [https://www.ebi.ac.uk/pdbsum/1ed1 PDBsum], [https://prosat.h-its.org/prosat/prosatexe?pdbcode=1ed1 ProSAT]</span></td></tr>
<tr id='resources'><td class="sblockLbl"><b>Resources:</b></td><td class="sblockDat"><span class='plainlinks'>[http://proteopedia.org/fgij/fg.htm?mol=1ed1 FirstGlance], [http://oca.weizmann.ac.il/oca-bin/ocaids?id=1ed1 OCA], [http://pdbe.org/1ed1 PDBe], [http://www.rcsb.org/pdb/explore.do?structureId=1ed1 RCSB], [http://www.ebi.ac.uk/pdbsum/1ed1 PDBsum], [http://prosat.h-its.org/prosat/prosatexe?pdbcode=1ed1 ProSAT]</span></td></tr>
</table>
</table>
== Function ==
== Function ==
[[http://www.uniprot.org/uniprot/Q03859_SIV Q03859_SIV]] Capsid protein p24 forms the conical core of the virus that encapsulates the genomic RNA-nucleocapsid complex (By similarity).[SAAS:SAAS012344_004_008806] Nucleocapsid protein p7 encapsulates and protects viral dimeric unspliced (genomic) RNA. Binds these RNAs through its zinc fingers (By similarity).[SAAS:SAAS012344_004_011858]  
[https://www.uniprot.org/uniprot/POL_SIVMK POL_SIVMK] Gag-Pol polyprotein and Gag polyprotein may regulate their own translation, by the binding genomic RNA in the 5'-UTR. At low concentration, Gag-Pol and Gag would promote translation, whereas at high concentration, the polyproteins encapsidate genomic RNA and then shutt off translation (By similarity).  Matrix protein p17 has two main functions: in infected cell, it targets Gag and Gag-pol polyproteins to the plasma membrane via a multipartite membrane-binding signal, that includes its myristointegration complex. The myristoylation signal and the NLS exert conflicting influences its subcellular localization. The key regulation of these motifs might be phosphorylation of a portion of MA molecules on the C-terminal tyrosine at the time of virus maturation, by virion-associated cellular tyrosine kinase. Implicated in the release from host cell mediated by Vpu (By similarity).  Capsid protein p24 forms the conical core that encapsulates the genomic RNA-nucleocapsid complex in the virion. The core is constituted by capsid protein hexamer subunits. The core is disassembled soon after virion entry. Interaction with host PPIA/CYPA protects the virus from restriction by host TRIM5-alpha and from an unknown antiviral activity in host cells. This capsid restriction by TRIM5 is one of the factors which restricts SIV to the simian species (By similarity).  Nucleocapsid protein p7 encapsulates and protects viral dimeric unspliced (genomic) RNA. Binds these RNAs through its zinc fingers. Facilitates rearangement of nucleic acid secondary structure during retrotranscription of genomic RNA. This capability is referred to as nucleic acid chaperone activity (By similarity).  The aspartyl protease mediates proteolytic cleavages of Gag and Gag-Pol polyproteins during or shortly after the release of the virion from the plasma membrane. Cleavages take place as an ordered, step-wise cascade to yield mature proteins. This process is called maturation. Displays maximal activity during the budding process just prior to particle release from the cell. Also cleaves Nef and Vif, probably concomitantly with viral structural proteins on maturation of virus particles. Hydrolyzes host EIF4GI and PABP1 in order to shut off the capped cellular mRNA translation. The resulting inhibition of cellular protein synthesis serves to ensure maximal viral gene expression and to evade host immune response (By similarity).[PROSITE-ProRule:PRU00275] Reverse transcriptase/ribonuclease H (RT) is a multifunctional enzyme that converts the viral dimeric RNA genome into dsDNA in the cytoplasm, shortly after virus entry into the cell. This enzyme displays a DNA polymerase activity that can copy either DNA or RNA templates, and a ribonuclease H (RNase H) activity that cleaves the RNA strand of RNA-DNA heteroduplexes in a partially processive 3' to 5' endonucleasic mode. Conversion of viral genomic RNA into dsDNA requires many steps. A tRNA binds to the primer-binding site (PBS) situated at the 5'-end of the viral RNA. RT uses the 3' end of the tRNA primer to perform a short round of RNA-dependent minus-strand DNA synthesis. The reading proceeds through the U5 region and ends after the repeated (R) region which is present at both ends of viral RNA. The portion of the RNA-DNA heteroduplex is digested by the RNase H, resulting in a ssDNA product attached to the tRNA primer. This ssDNA/tRNA hybridizes with the identical R region situated at the 3' end of viral RNA. This template exchange, known as minus-strand DNA strong stop transfer, can be either intra- or intermolecular. RT uses the 3' end of this newly synthesized short ssDNA to perform the RNA-dependent minus-strand DNA synthesis of the whole template. RNase H digests the RNA template except for two polypurine tracts (PPTs) situated at the 5'-end and near the center of the genome. It is not clear if both polymerase and RNase H activities are simultaneous. RNase H can probably proceed both in a polymerase-dependent (RNA cut into small fragments by the same RT performing DNA synthesis) and a polymerase-independent mode (cleavage of remaining RNA fragments by free RTs). Secondly, RT performs DNA-directed plus-strand DNA synthesis using the PPTs that have not been removed by RNase H as primers. PPTs and tRNA primers are then removed by RNase H. The 3' and 5' ssDNA PBS regions hybridize to form a circular dsDNA intermediate. Strand displacement synthesis by RT to the PBS and PPT ends produces a blunt ended, linear dsDNA copy of the viral genome that includes long terminal repeats (LTRs) at both ends (By similarity).  Integrase catalyzes viral DNA integration into the host chromosome, by performing a series of DNA cutting and joining reactions. This enzyme activity takes place after virion entry into a cell and reverse transcription of the RNA genome in dsDNA. The first step in the integration process is 3' processing. This step requires a complex comprising the viral genome, matrix protein, Vpr and integrase. This complex is called the pre-integration complex (PIC). The integrase protein removes 2 nucleotides from each 3' end of the viral DNA, leaving recessed CA OH's at the 3' ends. In the second step, the PIC enters cell nucleus. This process is mediated through integrase and Vpr proteins, and allows the virus to infect a non dividing cell. This ability to enter the nucleus is specific of lentiviruses, other retroviruses cannot and rely on cell division to access cell chromosomes. In the third step, termed strand transfer, the integrase protein joins the previously processed 3' ends to the 5' ends of strands of target cellular DNA at the site of integration. The 5'-ends are produced by integrase-catalyzed staggered cuts, 5 bp apart. A Y-shaped, gapped, recombination intermediate results, with the 5'-ends of the viral DNA strands and the 3' ends of target DNA strands remaining unjoined, flanking a gap of 5 bp. The last step is viral DNA integration into host chromosome. This involves host DNA repair synthesis in which the 5 bp gaps between the unjoined strands are filled in and then ligated. Since this process occurs at both cuts flanking the SIV genome, a 5 bp duplication of host DNA is produced at the ends of SIV integration. Alternatively, Integrase may catalyze the excision of viral DNA just after strand transfer, this is termed disintegration (By similarity).
== Evolutionary Conservation ==
== Evolutionary Conservation ==
[[Image:Consurf_key_small.gif|200px|right]]
[[Image:Consurf_key_small.gif|200px|right]]
Line 21: Line 20:
</jmol>, as determined by [http://consurfdb.tau.ac.il/ ConSurfDB]. You may read the [[Conservation%2C_Evolutionary|explanation]] of the method and the full data available from [http://bental.tau.ac.il/new_ConSurfDB/main_output.php?pdb_ID=1ed1 ConSurf].
</jmol>, as determined by [http://consurfdb.tau.ac.il/ ConSurfDB]. You may read the [[Conservation%2C_Evolutionary|explanation]] of the method and the full data available from [http://bental.tau.ac.il/new_ConSurfDB/main_output.php?pdb_ID=1ed1 ConSurf].
<div style="clear:both"></div>
<div style="clear:both"></div>
<div style="background-color:#fffaf0;">
== Publication Abstract from PubMed ==
Simian immunodeficiency virus (SIV) is closely related to human immunodeficiency virus (HIV), their matrix antigens (MAs) sharing some 50% sequence identity. MA is a component of Pr55Gag, the sole protein required for assembly of the virion shell. MA targets Pr55 to the plasma membrane, and facilitates incorporation of the virus envelope protein and assembly of the Pr55Gag shell. Cleavage of Pr55 by the viral protease produces the mature protein of relative molecular mass 17-18K, which underlies the host-derived membrane and is important in both virus entry and nuclear localization of the virion core. Here we report the crystal structure of SIV MA. The molecule forms a trimer consistent with oligomerization in vitro, the observed virion architecture, and various biological properties of MA.
Crystal structure of SIV matrix antigen and implications for virus assembly.,Rao Z, Belyaev AS, Fry E, Roy P, Jones IM, Stuart DI Nature. 1995 Dec 14;378(6558):743-7. PMID:7501025<ref>PMID:7501025</ref>
From MEDLINE&reg;/PubMed&reg;, a database of the U.S. National Library of Medicine.<br>
</div>
<div class="pdbe-citations 1ed1" style="background-color:#fffaf0;"></div>


==See Also==
==See Also==
*[[Gag polyprotein 3D structures|Gag polyprotein 3D structures]]
*[[Gag polyprotein 3D structures|Gag polyprotein 3D structures]]
== References ==
<references/>
__TOC__
__TOC__
</StructureSection>
</StructureSection>
[[Category: Large Structures]]
[[Category: Large Structures]]
[[Category: Simian immunodeficiency virus - mac]]
[[Category: Simian immunodeficiency virus - mac]]
[[Category: Belyaev, A]]
[[Category: Belyaev A]]
[[Category: Fry, E]]
[[Category: Fry E]]
[[Category: Jones, I M]]
[[Category: Jones IM]]
[[Category: Rao, Z]]
[[Category: Rao Z]]
[[Category: Roy, P]]
[[Category: Roy P]]
[[Category: Stuart, D I]]
[[Category: Stuart DI]]
[[Category: Trimeric association]]
[[Category: Viral protein]]

Proteopedia Page Contributors and Editors (what is this?)Proteopedia Page Contributors and Editors (what is this?)

OCA