1chn: Difference between revisions

From Proteopedia
Jump to navigation Jump to search
No edit summary
No edit summary
 
(One intermediate revision by the same user not shown)
Line 3: Line 3:
<StructureSection load='1chn' size='340' side='right'caption='[[1chn]], [[Resolution|resolution]] 1.76&Aring;' scene=''>
<StructureSection load='1chn' size='340' side='right'caption='[[1chn]], [[Resolution|resolution]] 1.76&Aring;' scene=''>
== Structural highlights ==
== Structural highlights ==
<table><tr><td colspan='2'>[[1chn]] is a 1 chain structure with sequence from [http://en.wikipedia.org/wiki/"bacillus_coli"_migula_1895 "bacillus coli" migula 1895]. Full crystallographic information is available from [http://oca.weizmann.ac.il/oca-bin/ocashort?id=1CHN OCA]. For a <b>guided tour on the structure components</b> use [http://oca.weizmann.ac.il/oca-docs/fgij/fg.htm?mol=1CHN FirstGlance]. <br>
<table><tr><td colspan='2'>[[1chn]] is a 1 chain structure with sequence from [https://en.wikipedia.org/wiki/Escherichia_coli Escherichia coli]. Full crystallographic information is available from [http://oca.weizmann.ac.il/oca-bin/ocashort?id=1CHN OCA]. For a <b>guided tour on the structure components</b> use [https://proteopedia.org/fgij/fg.htm?mol=1CHN FirstGlance]. <br>
</td></tr><tr id='ligand'><td class="sblockLbl"><b>[[Ligand|Ligands:]]</b></td><td class="sblockDat"><scene name='pdbligand=MG:MAGNESIUM+ION'>MG</scene></td></tr>
</td></tr><tr id='method'><td class="sblockLbl"><b>[[Empirical_models|Method:]]</b></td><td class="sblockDat" id="methodDat">X-ray diffraction, [[Resolution|Resolution]] 1.76&#8491;</td></tr>
<tr id='resources'><td class="sblockLbl"><b>Resources:</b></td><td class="sblockDat"><span class='plainlinks'>[http://oca.weizmann.ac.il/oca-docs/fgij/fg.htm?mol=1chn FirstGlance], [http://oca.weizmann.ac.il/oca-bin/ocaids?id=1chn OCA], [http://pdbe.org/1chn PDBe], [http://www.rcsb.org/pdb/explore.do?structureId=1chn RCSB], [http://www.ebi.ac.uk/pdbsum/1chn PDBsum], [http://prosat.h-its.org/prosat/prosatexe?pdbcode=1chn ProSAT]</span></td></tr>
<tr id='ligand'><td class="sblockLbl"><b>[[Ligand|Ligands:]]</b></td><td class="sblockDat" id="ligandDat"><scene name='pdbligand=MG:MAGNESIUM+ION'>MG</scene></td></tr>
<tr id='resources'><td class="sblockLbl"><b>Resources:</b></td><td class="sblockDat"><span class='plainlinks'>[https://proteopedia.org/fgij/fg.htm?mol=1chn FirstGlance], [http://oca.weizmann.ac.il/oca-bin/ocaids?id=1chn OCA], [https://pdbe.org/1chn PDBe], [https://www.rcsb.org/pdb/explore.do?structureId=1chn RCSB], [https://www.ebi.ac.uk/pdbsum/1chn PDBsum], [https://prosat.h-its.org/prosat/prosatexe?pdbcode=1chn ProSAT]</span></td></tr>
</table>
</table>
== Function ==
== Function ==
[[http://www.uniprot.org/uniprot/CHEY_ECOLI CHEY_ECOLI]] Involved in the transmission of sensory signals from the chemoreceptors to the flagellar motors. In its active (phosphorylated or acetylated) form, CheY exhibits enhanced binding to a switch component, FliM, at the flagellar motor which induces a change from counterclockwise to clockwise flagellar rotation. Overexpression of CheY in association with MotA and MotB improves motility of a ycgR disruption, suggesting there is an interaction (direct or indirect) between the c-di-GMP-binding flagellar brake protein and the flagellar stator.<ref>PMID:20346719</ref>
[https://www.uniprot.org/uniprot/CHEY_ECOLI CHEY_ECOLI] Involved in the transmission of sensory signals from the chemoreceptors to the flagellar motors. In its active (phosphorylated or acetylated) form, CheY exhibits enhanced binding to a switch component, FliM, at the flagellar motor which induces a change from counterclockwise to clockwise flagellar rotation. Overexpression of CheY in association with MotA and MotB improves motility of a ycgR disruption, suggesting there is an interaction (direct or indirect) between the c-di-GMP-binding flagellar brake protein and the flagellar stator.<ref>PMID:20346719</ref>  
== Evolutionary Conservation ==
== Evolutionary Conservation ==
[[Image:Consurf_key_small.gif|200px|right]]
[[Image:Consurf_key_small.gif|200px|right]]
Line 19: Line 20:
</jmol>, as determined by [http://consurfdb.tau.ac.il/ ConSurfDB]. You may read the [[Conservation%2C_Evolutionary|explanation]] of the method and the full data available from [http://bental.tau.ac.il/new_ConSurfDB/main_output.php?pdb_ID=1chn ConSurf].
</jmol>, as determined by [http://consurfdb.tau.ac.il/ ConSurfDB]. You may read the [[Conservation%2C_Evolutionary|explanation]] of the method and the full data available from [http://bental.tau.ac.il/new_ConSurfDB/main_output.php?pdb_ID=1chn ConSurf].
<div style="clear:both"></div>
<div style="clear:both"></div>
<div style="background-color:#fffaf0;">
== Publication Abstract from PubMed ==
The three-dimensional crystal structure of the bacterial chemotaxis protein CheY with the essential Mg2+ cation bound to the active site reveals large conformational changes caused by the metal binding. Displacements of up to 10 A are observed in several residues at the N terminus of alpha-helix 4 and in the preceding loop. One turn of this helix unwinds, and an Asn residue that was located inside the helix becomes the new N-cap. This supports the important role that N or C-cap residues play in alpha-helix stability. In addition the preceding beta-strand becomes elongated and a new beta-turn appears. The final effect is a significant modification of the surface relief of the protein in a region previously indicated, by genetic analysis, to be essential for CheY function. It is suggested that binding of a divalent cation to CheY could play a significant part in CheY activation and consequently in signal transduction in prokaryotes.
Magnesium binding to the bacterial chemotaxis protein CheY results in large conformational changes involving its functional surface.,Bellsolell L, Prieto J, Serrano L, Coll M J Mol Biol. 1994 May 13;238(4):489-95. PMID:8176739<ref>PMID:8176739</ref>
From MEDLINE&reg;/PubMed&reg;, a database of the U.S. National Library of Medicine.<br>
</div>
<div class="pdbe-citations 1chn" style="background-color:#fffaf0;"></div>
== References ==
== References ==
<references/>
<references/>
__TOC__
__TOC__
</StructureSection>
</StructureSection>
[[Category: Bacillus coli migula 1895]]
[[Category: Escherichia coli]]
[[Category: Large Structures]]
[[Category: Large Structures]]
[[Category: Bellsolell, L]]
[[Category: Bellsolell L]]
[[Category: Coll, M]]
[[Category: Coll M]]
[[Category: Signal transduction protein]]

Latest revision as of 09:43, 7 February 2024

MAGNESIUM BINDING TO THE BACTERIAL CHEMOTAXIS PROTEIN CHEY RESULTS IN LARGE CONFORMATIONAL CHANGES INVOLVING ITS FUNCTIONAL SURFACEMAGNESIUM BINDING TO THE BACTERIAL CHEMOTAXIS PROTEIN CHEY RESULTS IN LARGE CONFORMATIONAL CHANGES INVOLVING ITS FUNCTIONAL SURFACE

Structural highlights

1chn is a 1 chain structure with sequence from Escherichia coli. Full crystallographic information is available from OCA. For a guided tour on the structure components use FirstGlance.
Method:X-ray diffraction, Resolution 1.76Å
Ligands:
Resources:FirstGlance, OCA, PDBe, RCSB, PDBsum, ProSAT

Function

CHEY_ECOLI Involved in the transmission of sensory signals from the chemoreceptors to the flagellar motors. In its active (phosphorylated or acetylated) form, CheY exhibits enhanced binding to a switch component, FliM, at the flagellar motor which induces a change from counterclockwise to clockwise flagellar rotation. Overexpression of CheY in association with MotA and MotB improves motility of a ycgR disruption, suggesting there is an interaction (direct or indirect) between the c-di-GMP-binding flagellar brake protein and the flagellar stator.[1]

Evolutionary Conservation

Check, as determined by ConSurfDB. You may read the explanation of the method and the full data available from ConSurf.

References

  1. Paul K, Nieto V, Carlquist WC, Blair DF, Harshey RM. The c-di-GMP binding protein YcgR controls flagellar motor direction and speed to affect chemotaxis by a "backstop brake" mechanism. Mol Cell. 2010 Apr 9;38(1):128-39. doi: 10.1016/j.molcel.2010.03.001. Epub 2010, Mar 25. PMID:20346719 doi:10.1016/j.molcel.2010.03.001

1chn, resolution 1.76Å

Drag the structure with the mouse to rotate

Proteopedia Page Contributors and Editors (what is this?)Proteopedia Page Contributors and Editors (what is this?)

OCA