1chn: Difference between revisions

From Proteopedia
Jump to navigation Jump to search
No edit summary
No edit summary
 
(15 intermediate revisions by the same user not shown)
Line 1: Line 1:
[[Image:1chn.jpg|left|200px]]<br /><applet load="1chn" size="350" color="white" frame="true" align="right" spinBox="true"
caption="1chn, resolution 1.76&Aring;" />
'''MAGNESIUM BINDING TO THE BACTERIAL CHEMOTAXIS PROTEIN CHEY RESULTS IN LARGE CONFORMATIONAL CHANGES INVOLVING ITS FUNCTIONAL SURFACE'''<br />


==Overview==
==MAGNESIUM BINDING TO THE BACTERIAL CHEMOTAXIS PROTEIN CHEY RESULTS IN LARGE CONFORMATIONAL CHANGES INVOLVING ITS FUNCTIONAL SURFACE==
The three-dimensional crystal structure of the bacterial chemotaxis protein CheY with the essential Mg2+ cation bound to the active site reveals large conformational changes caused by the metal binding. Displacements of up to 10 A are observed in several residues at the N terminus of alpha-helix 4 and in the preceding loop. One turn of this helix unwinds, and an Asn residue that was located inside the helix becomes the new N-cap. This supports the important role that N or C-cap residues play in alpha-helix stability. In addition the preceding beta-strand becomes elongated and a new beta-turn appears. The final effect is a significant modification of the surface relief of the protein in a region previously indicated, by genetic analysis, to be essential for CheY function. It is suggested that binding of a divalent cation to CheY could play a significant part in CheY activation and consequently in signal transduction in prokaryotes.
<StructureSection load='1chn' size='340' side='right'caption='[[1chn]], [[Resolution|resolution]] 1.76&Aring;' scene=''>
 
== Structural highlights ==
==About this Structure==
<table><tr><td colspan='2'>[[1chn]] is a 1 chain structure with sequence from [https://en.wikipedia.org/wiki/Escherichia_coli Escherichia coli]. Full crystallographic information is available from [http://oca.weizmann.ac.il/oca-bin/ocashort?id=1CHN OCA]. For a <b>guided tour on the structure components</b> use [https://proteopedia.org/fgij/fg.htm?mol=1CHN FirstGlance]. <br>
1CHN is a [http://en.wikipedia.org/wiki/Single_protein Single protein] structure of sequence from [http://en.wikipedia.org/wiki/Escherichia_coli Escherichia coli] with <scene name='pdbligand=MG:'>MG</scene> as [http://en.wikipedia.org/wiki/ligand ligand]. Full crystallographic information is available from [http://oca.weizmann.ac.il/oca-bin/ocashort?id=1CHN OCA].  
</td></tr><tr id='method'><td class="sblockLbl"><b>[[Empirical_models|Method:]]</b></td><td class="sblockDat" id="methodDat">X-ray diffraction, [[Resolution|Resolution]] 1.76&#8491;</td></tr>
 
<tr id='ligand'><td class="sblockLbl"><b>[[Ligand|Ligands:]]</b></td><td class="sblockDat" id="ligandDat"><scene name='pdbligand=MG:MAGNESIUM+ION'>MG</scene></td></tr>
==Reference==
<tr id='resources'><td class="sblockLbl"><b>Resources:</b></td><td class="sblockDat"><span class='plainlinks'>[https://proteopedia.org/fgij/fg.htm?mol=1chn FirstGlance], [http://oca.weizmann.ac.il/oca-bin/ocaids?id=1chn OCA], [https://pdbe.org/1chn PDBe], [https://www.rcsb.org/pdb/explore.do?structureId=1chn RCSB], [https://www.ebi.ac.uk/pdbsum/1chn PDBsum], [https://prosat.h-its.org/prosat/prosatexe?pdbcode=1chn ProSAT]</span></td></tr>
Magnesium binding to the bacterial chemotaxis protein CheY results in large conformational changes involving its functional surface., Bellsolell L, Prieto J, Serrano L, Coll M, J Mol Biol. 1994 May 13;238(4):489-95. PMID:[http://ispc.weizmann.ac.il//pmbin/getpm?pmid=8176739 8176739]
</table>
== Function ==
[https://www.uniprot.org/uniprot/CHEY_ECOLI CHEY_ECOLI] Involved in the transmission of sensory signals from the chemoreceptors to the flagellar motors. In its active (phosphorylated or acetylated) form, CheY exhibits enhanced binding to a switch component, FliM, at the flagellar motor which induces a change from counterclockwise to clockwise flagellar rotation. Overexpression of CheY in association with MotA and MotB improves motility of a ycgR disruption, suggesting there is an interaction (direct or indirect) between the c-di-GMP-binding flagellar brake protein and the flagellar stator.<ref>PMID:20346719</ref>
== Evolutionary Conservation ==
[[Image:Consurf_key_small.gif|200px|right]]
Check<jmol>
  <jmolCheckbox>
    <scriptWhenChecked>; select protein; define ~consurf_to_do selected; consurf_initial_scene = true; script "/wiki/ConSurf/ch/1chn_consurf.spt"</scriptWhenChecked>
    <scriptWhenUnchecked>script /wiki/extensions/Proteopedia/spt/initialview01.spt</scriptWhenUnchecked>
    <text>to colour the structure by Evolutionary Conservation</text>
  </jmolCheckbox>
</jmol>, as determined by [http://consurfdb.tau.ac.il/ ConSurfDB]. You may read the [[Conservation%2C_Evolutionary|explanation]] of the method and the full data available from [http://bental.tau.ac.il/new_ConSurfDB/main_output.php?pdb_ID=1chn ConSurf].
<div style="clear:both"></div>
== References ==
<references/>
__TOC__
</StructureSection>
[[Category: Escherichia coli]]
[[Category: Escherichia coli]]
[[Category: Single protein]]
[[Category: Large Structures]]
[[Category: Bellsolell, L.]]
[[Category: Bellsolell L]]
[[Category: Coll, M.]]
[[Category: Coll M]]
[[Category: MG]]
[[Category: signal transduction protein]]
 
''Page seeded by [http://oca.weizmann.ac.il/oca OCA ] on Thu Feb 21 12:06:10 2008''

Latest revision as of 09:43, 7 February 2024

MAGNESIUM BINDING TO THE BACTERIAL CHEMOTAXIS PROTEIN CHEY RESULTS IN LARGE CONFORMATIONAL CHANGES INVOLVING ITS FUNCTIONAL SURFACEMAGNESIUM BINDING TO THE BACTERIAL CHEMOTAXIS PROTEIN CHEY RESULTS IN LARGE CONFORMATIONAL CHANGES INVOLVING ITS FUNCTIONAL SURFACE

Structural highlights

1chn is a 1 chain structure with sequence from Escherichia coli. Full crystallographic information is available from OCA. For a guided tour on the structure components use FirstGlance.
Method:X-ray diffraction, Resolution 1.76Å
Ligands:
Resources:FirstGlance, OCA, PDBe, RCSB, PDBsum, ProSAT

Function

CHEY_ECOLI Involved in the transmission of sensory signals from the chemoreceptors to the flagellar motors. In its active (phosphorylated or acetylated) form, CheY exhibits enhanced binding to a switch component, FliM, at the flagellar motor which induces a change from counterclockwise to clockwise flagellar rotation. Overexpression of CheY in association with MotA and MotB improves motility of a ycgR disruption, suggesting there is an interaction (direct or indirect) between the c-di-GMP-binding flagellar brake protein and the flagellar stator.[1]

Evolutionary Conservation

Check, as determined by ConSurfDB. You may read the explanation of the method and the full data available from ConSurf.

References

  1. Paul K, Nieto V, Carlquist WC, Blair DF, Harshey RM. The c-di-GMP binding protein YcgR controls flagellar motor direction and speed to affect chemotaxis by a "backstop brake" mechanism. Mol Cell. 2010 Apr 9;38(1):128-39. doi: 10.1016/j.molcel.2010.03.001. Epub 2010, Mar 25. PMID:20346719 doi:10.1016/j.molcel.2010.03.001

1chn, resolution 1.76Å

Drag the structure with the mouse to rotate

Proteopedia Page Contributors and Editors (what is this?)Proteopedia Page Contributors and Editors (what is this?)

OCA