1bi7: Difference between revisions

From Proteopedia
Jump to navigation Jump to search
No edit summary
No edit summary
 
(2 intermediate revisions by the same user not shown)
Line 1: Line 1:


==MECHANISM OF G1 CYCLIN DEPENDENT KINASE INHIBITION FROM THE STRUCTURE OF THE CDK6-P16INK4A TUMOR SUPPRESSOR COMPLEX==
==MECHANISM OF G1 CYCLIN DEPENDENT KINASE INHIBITION FROM THE STRUCTURE OF THE CDK6-P16INK4A TUMOR SUPPRESSOR COMPLEX==
<StructureSection load='1bi7' size='340' side='right' caption='[[1bi7]], [[Resolution|resolution]] 3.40&Aring;' scene=''>
<StructureSection load='1bi7' size='340' side='right'caption='[[1bi7]], [[Resolution|resolution]] 3.40&Aring;' scene=''>
== Structural highlights ==
== Structural highlights ==
<table><tr><td colspan='2'>[[1bi7]] is a 2 chain structure with sequence from [http://en.wikipedia.org/wiki/Human Human]. Full crystallographic information is available from [http://oca.weizmann.ac.il/oca-bin/ocashort?id=1BI7 OCA]. For a <b>guided tour on the structure components</b> use [http://oca.weizmann.ac.il/oca-docs/fgij/fg.htm?mol=1BI7 FirstGlance]. <br>
<table><tr><td colspan='2'>[[1bi7]] is a 2 chain structure with sequence from [https://en.wikipedia.org/wiki/Homo_sapiens Homo sapiens]. Full crystallographic information is available from [http://oca.weizmann.ac.il/oca-bin/ocashort?id=1BI7 OCA]. For a <b>guided tour on the structure components</b> use [https://proteopedia.org/fgij/fg.htm?mol=1BI7 FirstGlance]. <br>
</td></tr><tr id='resources'><td class="sblockLbl"><b>Resources:</b></td><td class="sblockDat"><span class='plainlinks'>[http://oca.weizmann.ac.il/oca-docs/fgij/fg.htm?mol=1bi7 FirstGlance], [http://oca.weizmann.ac.il/oca-bin/ocaids?id=1bi7 OCA], [http://pdbe.org/1bi7 PDBe], [http://www.rcsb.org/pdb/explore.do?structureId=1bi7 RCSB], [http://www.ebi.ac.uk/pdbsum/1bi7 PDBsum], [http://prosat.h-its.org/prosat/prosatexe?pdbcode=1bi7 ProSAT]</span></td></tr>
</td></tr><tr id='method'><td class="sblockLbl"><b>[[Empirical_models|Method:]]</b></td><td class="sblockDat" id="methodDat">X-ray diffraction, [[Resolution|Resolution]] 3.4&#8491;</td></tr>
<tr id='resources'><td class="sblockLbl"><b>Resources:</b></td><td class="sblockDat"><span class='plainlinks'>[https://proteopedia.org/fgij/fg.htm?mol=1bi7 FirstGlance], [http://oca.weizmann.ac.il/oca-bin/ocaids?id=1bi7 OCA], [https://pdbe.org/1bi7 PDBe], [https://www.rcsb.org/pdb/explore.do?structureId=1bi7 RCSB], [https://www.ebi.ac.uk/pdbsum/1bi7 PDBsum], [https://prosat.h-its.org/prosat/prosatexe?pdbcode=1bi7 ProSAT]</span></td></tr>
</table>
</table>
== Disease ==
[[http://www.uniprot.org/uniprot/CD2A1_HUMAN CD2A1_HUMAN]] Note=The association between cutaneous and uveal melanomas in some families suggests that mutations in CDKN2A may account for a proportion of uveal melanomas. However, CDKN2A mutations are rarely found in uveal melanoma patients.  Defects in CDKN2A are the cause of cutaneous malignant melanoma type 2 (CMM2) [MIM:[http://omim.org/entry/155601 155601]]. Malignant melanoma is a malignant neoplasm of melanocytes, arising de novo or from a pre-existing benign nevus, which occurs most often in the skin but also may involve other sites.<ref>PMID:7987387</ref> <ref>PMID:8595405</ref> <ref>PMID:8653684</ref> <ref>PMID:8710906</ref> <ref>PMID:9328469</ref> <ref>PMID:9425228</ref> <ref>PMID:10651484</ref> <ref>PMID:11506491</ref> <ref>PMID:12019208</ref> <ref>PMID:10874641</ref> <ref>PMID:14646619</ref> <ref>PMID:19260062</ref>  Defects in CDKN2A are the cause of familial atypical multiple mole melanoma-pancreatic carcinoma syndrome (FAMMMPC) [MIM:[http://omim.org/entry/606719 606719]].  Defects in CDKN2A are a cause of Li-Fraumeni syndrome (LFS) [MIM:[http://omim.org/entry/151623 151623]]. LFS is a highly penetrant familial cancer phenotype usually associated with inherited mutations in TP53.<ref>PMID:10484981</ref>  Defects in CDKN2A are the cause of melanoma-astrocytoma syndrome (MASTS) [MIM:[http://omim.org/entry/155755 155755]]. The melanoma-astrocytoma syndrome is characterized by a dual predisposition to melanoma and neural system tumors, commonly astrocytoma.<ref>PMID:11136714</ref> 
== Function ==
== Function ==
[[http://www.uniprot.org/uniprot/CDK6_HUMAN CDK6_HUMAN]] Serine/threonine-protein kinase involved in the control of the cell cycle and differentiation; promotes G1/S transition. Phosphorylates pRB/RB1 and NPM1. Interacts with D-type G1 cyclins during interphase at G1 to form a pRB/RB1 kinase and controls the entrance into the cell cycle. Involved in initiation and maintenance of cell cycle exit during cell differentiation; prevents cell proliferation and regulates negatively cell differentiation, but is required for the proliferation of specific cell types (e.g. erythroid and hematopoietic cells). Essential for cell proliferation within the dentate gyrus of the hippocampus and the subventricular zone of the lateral ventricles. Required during thymocyte development. Promotes the production of newborn neurons, probably by modulating G1 length. Promotes, at least in astrocytes, changes in patterns of gene expression, changes in the actin cytoskeleton including loss of stress fibers, and enhanced motility during cell differentiation. Prevents myeloid differentiation by interfering with RUNX1 and reducing its transcription transactivation activity, but promotes proliferation of normal myeloid progenitors. Delays senescence. Promotes the proliferation of beta-cells in pancreatic islets of Langerhans.<ref>PMID:8114739</ref> <ref>PMID:12833137</ref> <ref>PMID:14985467</ref> <ref>PMID:15254224</ref> <ref>PMID:15809340</ref> <ref>PMID:17431401</ref> <ref>PMID:17420273</ref> <ref>PMID:20668294</ref> <ref>PMID:20333249</ref> [[http://www.uniprot.org/uniprot/CD2A1_HUMAN CD2A1_HUMAN]] Acts as a negative regulator of the proliferation of normal cells by interacting strongly with CDK4 and CDK6. This inhibits their ability to interact with cyclins D and to phosphorylate the retinoblastoma protein.<ref>PMID:7972006</ref> <ref>PMID:16782892</ref> 
[https://www.uniprot.org/uniprot/CDK6_HUMAN CDK6_HUMAN] Serine/threonine-protein kinase involved in the control of the cell cycle and differentiation; promotes G1/S transition. Phosphorylates pRB/RB1 and NPM1. Interacts with D-type G1 cyclins during interphase at G1 to form a pRB/RB1 kinase and controls the entrance into the cell cycle. Involved in initiation and maintenance of cell cycle exit during cell differentiation; prevents cell proliferation and regulates negatively cell differentiation, but is required for the proliferation of specific cell types (e.g. erythroid and hematopoietic cells). Essential for cell proliferation within the dentate gyrus of the hippocampus and the subventricular zone of the lateral ventricles. Required during thymocyte development. Promotes the production of newborn neurons, probably by modulating G1 length. Promotes, at least in astrocytes, changes in patterns of gene expression, changes in the actin cytoskeleton including loss of stress fibers, and enhanced motility during cell differentiation. Prevents myeloid differentiation by interfering with RUNX1 and reducing its transcription transactivation activity, but promotes proliferation of normal myeloid progenitors. Delays senescence. Promotes the proliferation of beta-cells in pancreatic islets of Langerhans.<ref>PMID:8114739</ref> <ref>PMID:12833137</ref> <ref>PMID:14985467</ref> <ref>PMID:15254224</ref> <ref>PMID:15809340</ref> <ref>PMID:17431401</ref> <ref>PMID:17420273</ref> <ref>PMID:20668294</ref> <ref>PMID:20333249</ref>  
== Evolutionary Conservation ==
== Evolutionary Conservation ==
[[Image:Consurf_key_small.gif|200px|right]]
[[Image:Consurf_key_small.gif|200px|right]]
Check<jmol>
Check<jmol>
   <jmolCheckbox>
   <jmolCheckbox>
     <scriptWhenChecked>select protein; define ~consurf_to_do selected; consurf_initial_scene = true; script "/wiki/ConSurf/bi/1bi7_consurf.spt"</scriptWhenChecked>
     <scriptWhenChecked>; select protein; define ~consurf_to_do selected; consurf_initial_scene = true; script "/wiki/ConSurf/bi/1bi7_consurf.spt"</scriptWhenChecked>
     <scriptWhenUnchecked>script /wiki/extensions/Proteopedia/spt/initialview01.spt</scriptWhenUnchecked>
     <scriptWhenUnchecked>script /wiki/extensions/Proteopedia/spt/initialview01.spt</scriptWhenUnchecked>
     <text>to colour the structure by Evolutionary Conservation</text>
     <text>to colour the structure by Evolutionary Conservation</text>
Line 20: Line 19:
</jmol>, as determined by [http://consurfdb.tau.ac.il/ ConSurfDB]. You may read the [[Conservation%2C_Evolutionary|explanation]] of the method and the full data available from [http://bental.tau.ac.il/new_ConSurfDB/main_output.php?pdb_ID=1bi7 ConSurf].
</jmol>, as determined by [http://consurfdb.tau.ac.il/ ConSurfDB]. You may read the [[Conservation%2C_Evolutionary|explanation]] of the method and the full data available from [http://bental.tau.ac.il/new_ConSurfDB/main_output.php?pdb_ID=1bi7 ConSurf].
<div style="clear:both"></div>
<div style="clear:both"></div>
<div style="background-color:#fffaf0;">
== Publication Abstract from PubMed ==
The cyclin-dependent kinases 4 and 6 (Cdk4/6) that control the G1 phase of the cell cycle and their inhibitor, the p16INK4a tumour suppressor, have a central role in cell proliferation and in tumorigenesis. The structures of Cdk6 bound to p16INK4a and to the related p19INK4d reveal that the INK4 inhibitors bind next to the ATP-binding site of the catalytic cleft, opposite where the activating cyclin subunit binds. They prevent cyclin binding indirectly by causing structural changes that propagate to the cyclin-binding site. The INK4 inhibitors also distort the kinase catalytic cleft and interfere with ATP binding, which explains how they can inhibit the preassembled Cdk4/6-cyclin D complexes as well. Tumour-derived mutations in INK4a and Cdk4 map to interface contacts, solidifying the role of CDK binding and inhibition in the tumour suppressor activity of p16INK4a.


Structural basis for inhibition of the cyclin-dependent kinase Cdk6 by the tumour suppressor p16INK4a.,Russo AA, Tong L, Lee JO, Jeffrey PD, Pavletich NP Nature. 1998 Sep 17;395(6699):237-43. PMID:9751050<ref>PMID:9751050</ref>
==See Also==
 
*[[Cyclin-dependent kinase 3D structures|Cyclin-dependent kinase 3D structures]]
From MEDLINE&reg;/PubMed&reg;, a database of the U.S. National Library of Medicine.<br>
</div>
<div class="pdbe-citations 1bi7" style="background-color:#fffaf0;"></div>
== References ==
== References ==
<references/>
<references/>
__TOC__
__TOC__
</StructureSection>
</StructureSection>
[[Category: Human]]
[[Category: Homo sapiens]]
[[Category: Jeffrey, P D]]
[[Category: Large Structures]]
[[Category: Lee, J O]]
[[Category: Jeffrey PD]]
[[Category: Pavletich, N P]]
[[Category: Lee JO]]
[[Category: Russo, A A]]
[[Category: Pavletich NP]]
[[Category: Tong, L]]
[[Category: Russo AA]]
[[Category: Cdk]]
[[Category: Tong L]]
[[Category: Cell cycle]]
[[Category: Cyclin dependent kinase]]
[[Category: Cyclin dependent kinase inhibitory protein]]
[[Category: Ink4]]
[[Category: Mts1]]
[[Category: Multiple tumor suppressor]]

Latest revision as of 09:36, 7 February 2024

MECHANISM OF G1 CYCLIN DEPENDENT KINASE INHIBITION FROM THE STRUCTURE OF THE CDK6-P16INK4A TUMOR SUPPRESSOR COMPLEXMECHANISM OF G1 CYCLIN DEPENDENT KINASE INHIBITION FROM THE STRUCTURE OF THE CDK6-P16INK4A TUMOR SUPPRESSOR COMPLEX

Structural highlights

1bi7 is a 2 chain structure with sequence from Homo sapiens. Full crystallographic information is available from OCA. For a guided tour on the structure components use FirstGlance.
Method:X-ray diffraction, Resolution 3.4Å
Resources:FirstGlance, OCA, PDBe, RCSB, PDBsum, ProSAT

Function

CDK6_HUMAN Serine/threonine-protein kinase involved in the control of the cell cycle and differentiation; promotes G1/S transition. Phosphorylates pRB/RB1 and NPM1. Interacts with D-type G1 cyclins during interphase at G1 to form a pRB/RB1 kinase and controls the entrance into the cell cycle. Involved in initiation and maintenance of cell cycle exit during cell differentiation; prevents cell proliferation and regulates negatively cell differentiation, but is required for the proliferation of specific cell types (e.g. erythroid and hematopoietic cells). Essential for cell proliferation within the dentate gyrus of the hippocampus and the subventricular zone of the lateral ventricles. Required during thymocyte development. Promotes the production of newborn neurons, probably by modulating G1 length. Promotes, at least in astrocytes, changes in patterns of gene expression, changes in the actin cytoskeleton including loss of stress fibers, and enhanced motility during cell differentiation. Prevents myeloid differentiation by interfering with RUNX1 and reducing its transcription transactivation activity, but promotes proliferation of normal myeloid progenitors. Delays senescence. Promotes the proliferation of beta-cells in pancreatic islets of Langerhans.[1] [2] [3] [4] [5] [6] [7] [8] [9]

Evolutionary Conservation

Check, as determined by ConSurfDB. You may read the explanation of the method and the full data available from ConSurf.

See Also

References

  1. Meyerson M, Harlow E. Identification of G1 kinase activity for cdk6, a novel cyclin D partner. Mol Cell Biol. 1994 Mar;14(3):2077-86. PMID:8114739
  2. Matushansky I, Radparvar F, Skoultchi AI. CDK6 blocks differentiation: coupling cell proliferation to the block to differentiation in leukemic cells. Oncogene. 2003 Jul 3;22(27):4143-9. PMID:12833137 doi:10.1038/sj.onc.1206484
  3. Lucas JJ, Domenico J, Gelfand EW. Cyclin-dependent kinase 6 inhibits proliferation of human mammary epithelial cells. Mol Cancer Res. 2004 Feb;2(2):105-14. PMID:14985467
  4. Ogasawara T, Kawaguchi H, Jinno S, Hoshi K, Itaka K, Takato T, Nakamura K, Okayama H. Bone morphogenetic protein 2-induced osteoblast differentiation requires Smad-mediated down-regulation of Cdk6. Mol Cell Biol. 2004 Aug;24(15):6560-8. PMID:15254224 doi:10.1128/MCB.24.15.6560-6568.2004
  5. Takaki T, Fukasawa K, Suzuki-Takahashi I, Semba K, Kitagawa M, Taya Y, Hirai H. Preferences for phosphorylation sites in the retinoblastoma protein of D-type cyclin-dependent kinases, Cdk4 and Cdk6, in vitro. J Biochem. 2005 Mar;137(3):381-6. PMID:15809340 doi:10.1093/jb/mvi050
  6. Fujimoto T, Anderson K, Jacobsen SE, Nishikawa SI, Nerlov C. Cdk6 blocks myeloid differentiation by interfering with Runx1 DNA binding and Runx1-C/EBPalpha interaction. EMBO J. 2007 May 2;26(9):2361-70. Epub 2007 Apr 12. PMID:17431401 doi:10.1038/sj.emboj.7601675
  7. Ruas M, Gregory F, Jones R, Poolman R, Starborg M, Rowe J, Brookes S, Peters G. CDK4 and CDK6 delay senescence by kinase-dependent and p16INK4a-independent mechanisms. Mol Cell Biol. 2007 Jun;27(12):4273-82. Epub 2007 Apr 9. PMID:17420273 doi:10.1128/MCB.02286-06
  8. Fiaschi-Taesch NM, Salim F, Kleinberger J, Troxell R, Cozar-Castellano I, Selk K, Cherok E, Takane KK, Scott DK, Stewart AF. Induction of human beta-cell proliferation and engraftment using a single G1/S regulatory molecule, cdk6. Diabetes. 2010 Aug;59(8):1926-36. doi: 10.2337/db09-1776. PMID:20668294 doi:10.2337/db09-1776
  9. Sarek G, Jarviluoma A, Moore HM, Tojkander S, Vartia S, Biberfeld P, Laiho M, Ojala PM. Nucleophosmin phosphorylation by v-cyclin-CDK6 controls KSHV latency. PLoS Pathog. 2010 Mar 19;6(3):e1000818. doi: 10.1371/journal.ppat.1000818. PMID:20333249 doi:10.1371/journal.ppat.1000818

1bi7, resolution 3.40Å

Drag the structure with the mouse to rotate

Proteopedia Page Contributors and Editors (what is this?)Proteopedia Page Contributors and Editors (what is this?)

OCA