1agp: Difference between revisions

No edit summary
No edit summary
 
(4 intermediate revisions by the same user not shown)
Line 1: Line 1:
==THREE-DIMENSIONAL STRUCTURES AND PROPERTIES OF A TRANSFORMING AND A NONTRANSFORMING GLY-12 MUTANT OF P21-H-RAS==
==THREE-DIMENSIONAL STRUCTURES AND PROPERTIES OF A TRANSFORMING AND A NONTRANSFORMING GLY-12 MUTANT OF P21-H-RAS==
<StructureSection load='1agp' size='340' side='right' caption='[[1agp]], [[Resolution|resolution]] 2.30&Aring;' scene=''>
<StructureSection load='1agp' size='340' side='right'caption='[[1agp]], [[Resolution|resolution]] 2.30&Aring;' scene=''>
== Structural highlights ==
== Structural highlights ==
<table><tr><td colspan='2'>[[1agp]] is a 1 chain structure with sequence from [http://en.wikipedia.org/wiki/Human Human]. Full crystallographic information is available from [http://oca.weizmann.ac.il/oca-bin/ocashort?id=1AGP OCA]. For a <b>guided tour on the structure components</b> use [http://oca.weizmann.ac.il/oca-docs/fgij/fg.htm?mol=1AGP FirstGlance]. <br>
<table><tr><td colspan='2'>[[1agp]] is a 1 chain structure with sequence from [https://en.wikipedia.org/wiki/Homo_sapiens Homo sapiens]. Full crystallographic information is available from [http://oca.weizmann.ac.il/oca-bin/ocashort?id=1AGP OCA]. For a <b>guided tour on the structure components</b> use [https://proteopedia.org/fgij/fg.htm?mol=1AGP FirstGlance]. <br>
</td></tr><tr id='ligand'><td class="sblockLbl"><b>[[Ligand|Ligands:]]</b></td><td class="sblockDat"><scene name='pdbligand=GNP:PHOSPHOAMINOPHOSPHONIC+ACID-GUANYLATE+ESTER'>GNP</scene>, <scene name='pdbligand=MG:MAGNESIUM+ION'>MG</scene></td></tr>
</td></tr><tr id='method'><td class="sblockLbl"><b>[[Empirical_models|Method:]]</b></td><td class="sblockDat" id="methodDat">X-ray diffraction, [[Resolution|Resolution]] 2.3&#8491;</td></tr>
<tr id='resources'><td class="sblockLbl"><b>Resources:</b></td><td class="sblockDat"><span class='plainlinks'>[http://oca.weizmann.ac.il/oca-docs/fgij/fg.htm?mol=1agp FirstGlance], [http://oca.weizmann.ac.il/oca-bin/ocaids?id=1agp OCA], [http://pdbe.org/1agp PDBe], [http://www.rcsb.org/pdb/explore.do?structureId=1agp RCSB], [http://www.ebi.ac.uk/pdbsum/1agp PDBsum]</span></td></tr>
<tr id='ligand'><td class="sblockLbl"><b>[[Ligand|Ligands:]]</b></td><td class="sblockDat" id="ligandDat"><scene name='pdbligand=GNP:PHOSPHOAMINOPHOSPHONIC+ACID-GUANYLATE+ESTER'>GNP</scene>, <scene name='pdbligand=MG:MAGNESIUM+ION'>MG</scene></td></tr>
<tr id='resources'><td class="sblockLbl"><b>Resources:</b></td><td class="sblockDat"><span class='plainlinks'>[https://proteopedia.org/fgij/fg.htm?mol=1agp FirstGlance], [http://oca.weizmann.ac.il/oca-bin/ocaids?id=1agp OCA], [https://pdbe.org/1agp PDBe], [https://www.rcsb.org/pdb/explore.do?structureId=1agp RCSB], [https://www.ebi.ac.uk/pdbsum/1agp PDBsum], [https://prosat.h-its.org/prosat/prosatexe?pdbcode=1agp ProSAT]</span></td></tr>
</table>
</table>
== Disease ==
== Disease ==
[[http://www.uniprot.org/uniprot/RASH_HUMAN RASH_HUMAN]] Defects in HRAS are the cause of faciocutaneoskeletal syndrome (FCSS) [MIM:[http://omim.org/entry/218040 218040]]. A rare condition characterized by prenatally increased growth, postnatal growth deficiency, mental retardation, distinctive facial appearance, cardiovascular abnormalities (typically pulmonic stenosis, hypertrophic cardiomyopathy and/or atrial tachycardia), tumor predisposition, skin and musculoskeletal abnormalities.<ref>PMID:16170316</ref> <ref>PMID:16329078</ref> <ref>PMID:16443854</ref> <ref>PMID:17054105</ref> <ref>PMID:18247425</ref> <ref>PMID:18039947</ref> <ref>PMID:19995790</ref>  Defects in HRAS are the cause of congenital myopathy with excess of muscle spindles (CMEMS) [MIM:[http://omim.org/entry/218040 218040]]. CMEMS is a variant of Costello syndrome.<ref>PMID:17412879</ref>  Defects in HRAS may be a cause of susceptibility to Hurthle cell thyroid carcinoma (HCTC) [MIM:[http://omim.org/entry/607464 607464]]. Hurthle cell thyroid carcinoma accounts for approximately 3% of all thyroid cancers. Although they are classified as variants of follicular neoplasms, they are more often multifocal and somewhat more aggressive and are less likely to take up iodine than are other follicular neoplasms.  Note=Mutations which change positions 12, 13 or 61 activate the potential of HRAS to transform cultured cells and are implicated in a variety of human tumors.  Defects in HRAS are a cause of susceptibility to bladder cancer (BLC) [MIM:[http://omim.org/entry/109800 109800]]. A malignancy originating in tissues of the urinary bladder. It often presents with multiple tumors appearing at different times and at different sites in the bladder. Most bladder cancers are transitional cell carcinomas. They begin in cells that normally make up the inner lining of the bladder. Other types of bladder cancer include squamous cell carcinoma (cancer that begins in thin, flat cells) and adenocarcinoma (cancer that begins in cells that make and release mucus and other fluids). Bladder cancer is a complex disorder with both genetic and environmental influences.  Note=Defects in HRAS are the cause of oral squamous cell carcinoma (OSCC).<ref>PMID:1459726</ref>  Defects in HRAS are the cause of Schimmelpenning-Feuerstein-Mims syndrome (SFM) [MIM:[http://omim.org/entry/163200 163200]]. A disease characterized by sebaceous nevi, often on the face, associated with variable ipsilateral abnormalities of the central nervous system, ocular anomalies, and skeletal defects. Many oral manifestations have been reported, not only including hypoplastic and malformed teeth, and mucosal papillomatosis, but also ankyloglossia, hemihyperplastic tongue, intraoral nevus, giant cell granuloma, ameloblastoma, bone cysts, follicular cysts, oligodontia, and odontodysplasia. Sebaceous nevi follow the lines of Blaschko and these can continue as linear intraoral lesions, as in mucosal papillomatosis.<ref>PMID:22683711</ref>
[https://www.uniprot.org/uniprot/RASH_HUMAN RASH_HUMAN] Defects in HRAS are the cause of faciocutaneoskeletal syndrome (FCSS) [MIM:[https://omim.org/entry/218040 218040]. A rare condition characterized by prenatally increased growth, postnatal growth deficiency, mental retardation, distinctive facial appearance, cardiovascular abnormalities (typically pulmonic stenosis, hypertrophic cardiomyopathy and/or atrial tachycardia), tumor predisposition, skin and musculoskeletal abnormalities.<ref>PMID:16170316</ref> <ref>PMID:16329078</ref> <ref>PMID:16443854</ref> <ref>PMID:17054105</ref> <ref>PMID:18247425</ref> <ref>PMID:18039947</ref> <ref>PMID:19995790</ref>  Defects in HRAS are the cause of congenital myopathy with excess of muscle spindles (CMEMS) [MIM:[https://omim.org/entry/218040 218040]. CMEMS is a variant of Costello syndrome.<ref>PMID:17412879</ref>  Defects in HRAS may be a cause of susceptibility to Hurthle cell thyroid carcinoma (HCTC) [MIM:[https://omim.org/entry/607464 607464]. Hurthle cell thyroid carcinoma accounts for approximately 3% of all thyroid cancers. Although they are classified as variants of follicular neoplasms, they are more often multifocal and somewhat more aggressive and are less likely to take up iodine than are other follicular neoplasms.  Note=Mutations which change positions 12, 13 or 61 activate the potential of HRAS to transform cultured cells and are implicated in a variety of human tumors.  Defects in HRAS are a cause of susceptibility to bladder cancer (BLC) [MIM:[https://omim.org/entry/109800 109800]. A malignancy originating in tissues of the urinary bladder. It often presents with multiple tumors appearing at different times and at different sites in the bladder. Most bladder cancers are transitional cell carcinomas. They begin in cells that normally make up the inner lining of the bladder. Other types of bladder cancer include squamous cell carcinoma (cancer that begins in thin, flat cells) and adenocarcinoma (cancer that begins in cells that make and release mucus and other fluids). Bladder cancer is a complex disorder with both genetic and environmental influences.  Note=Defects in HRAS are the cause of oral squamous cell carcinoma (OSCC).<ref>PMID:1459726</ref>  Defects in HRAS are the cause of Schimmelpenning-Feuerstein-Mims syndrome (SFM) [MIM:[https://omim.org/entry/163200 163200]. A disease characterized by sebaceous nevi, often on the face, associated with variable ipsilateral abnormalities of the central nervous system, ocular anomalies, and skeletal defects. Many oral manifestations have been reported, not only including hypoplastic and malformed teeth, and mucosal papillomatosis, but also ankyloglossia, hemihyperplastic tongue, intraoral nevus, giant cell granuloma, ameloblastoma, bone cysts, follicular cysts, oligodontia, and odontodysplasia. Sebaceous nevi follow the lines of Blaschko and these can continue as linear intraoral lesions, as in mucosal papillomatosis.<ref>PMID:22683711</ref>  
== Function ==
== Function ==
[[http://www.uniprot.org/uniprot/RASH_HUMAN RASH_HUMAN]] Ras proteins bind GDP/GTP and possess intrinsic GTPase activity.<ref>PMID:14500341</ref> <ref>PMID:9020151</ref> <ref>PMID:12740440</ref>
[https://www.uniprot.org/uniprot/RASH_HUMAN RASH_HUMAN] Ras proteins bind GDP/GTP and possess intrinsic GTPase activity.<ref>PMID:14500341</ref> <ref>PMID:9020151</ref> <ref>PMID:12740440</ref>  
== Evolutionary Conservation ==
== Evolutionary Conservation ==
[[Image:Consurf_key_small.gif|200px|right]]
[[Image:Consurf_key_small.gif|200px|right]]
Check<jmol>
Check<jmol>
   <jmolCheckbox>
   <jmolCheckbox>
     <scriptWhenChecked>select protein; define ~consurf_to_do selected; consurf_initial_scene = true; script "/wiki/ConSurf/ag/1agp_consurf.spt"</scriptWhenChecked>
     <scriptWhenChecked>; select protein; define ~consurf_to_do selected; consurf_initial_scene = true; script "/wiki/ConSurf/ag/1agp_consurf.spt"</scriptWhenChecked>
     <scriptWhenUnchecked>script /wiki/extensions/Proteopedia/spt/initialview01.spt</scriptWhenUnchecked>
     <scriptWhenUnchecked>script /wiki/extensions/Proteopedia/spt/initialview01.spt</scriptWhenUnchecked>
     <text>to colour the structure by Evolutionary Conservation</text>
     <text>to colour the structure by Evolutionary Conservation</text>
   </jmolCheckbox>
   </jmolCheckbox>
</jmol>, as determined by [http://consurfdb.tau.ac.il/ ConSurfDB]. You may read the [[Conservation%2C_Evolutionary|explanation]] of the method and the full data available from [http://bental.tau.ac.il/new_ConSurfDB/chain_selection.php?pdb_ID=2ata ConSurf].
</jmol>, as determined by [http://consurfdb.tau.ac.il/ ConSurfDB]. You may read the [[Conservation%2C_Evolutionary|explanation]] of the method and the full data available from [http://bental.tau.ac.il/new_ConSurfDB/main_output.php?pdb_ID=1agp ConSurf].
<div style="clear:both"></div>
<div style="clear:both"></div>
<div style="background-color:#fffaf0;">
== Publication Abstract from PubMed ==
The three-dimensional structures and biochemical properties of two mutants of the G-domain (residues 1-166) of p21H-ras, p21 (G12D) and p21 (G12P), have been determined in the triphosphate-bound form using guanosine 5'-(beta,gamma-imido)triphosphate (GppNHp). They correspond to the most frequent oncogenic and the only nononcogenic mutation of Gly-12, respectively. The G12D mutation is the only mutant analyzed so far that crystallizes in a space group different from wild type, and the atomic model of the protein shows the most drastic changes of structure around the active site as compared to wild-type p21. This is due to the interactions of the aspartic acid side chain with Tyr-32, Gln-61, and the gamma-phosphate, which result in reduced mobility of these structural elements. The interaction between the carboxylate group of Asp-12 and the gamma-phosphate is mediated by a shared proton, which we show by 31P NMR measurements to exist in solution as well. The structure of p21 (G12P) is remarkably similar to that of wild-type p21 in the active site, including the position of the nucleophilic water. The pyrrolidine ring of Pro-12 points outward and seems to be responsible for the weaker affinity toward GAP (GTPase-activating protein) and the failure of GAP to stimulate GTP hydrolysis.
Three-dimensional structures and properties of a transforming and a nontransforming glycine-12 mutant of p21H-ras.,Franken SM, Scheidig AJ, Krengel U, Rensland H, Lautwein A, Geyer M, Scheffzek K, Goody RS, Kalbitzer HR, Pai EF, et al. Biochemistry. 1993 Aug 24;32(33):8411-20. PMID:8357792<ref>PMID:8357792</ref>
From MEDLINE&reg;/PubMed&reg;, a database of the U.S. National Library of Medicine.<br>
</div>
<div class="pdbe-citations 1agp" style="background-color:#fffaf0;"></div>


==See Also==
==See Also==
*[[GTPase HRas|GTPase HRas]]
*[[GTPase Hras 3D structures|GTPase Hras 3D structures]]
== References ==
== References ==
<references/>
<references/>
__TOC__
__TOC__
</StructureSection>
</StructureSection>
[[Category: Human]]
[[Category: Homo sapiens]]
[[Category: Franken, S M]]
[[Category: Large Structures]]
[[Category: Goody, R S]]
[[Category: Franken SM]]
[[Category: Scheidig, A J]]
[[Category: Goody RS]]
[[Category: Wittinghofer, A]]
[[Category: Scheidig AJ]]
[[Category: Oncogene protein]]
[[Category: Wittinghofer A]]

Proteopedia Page Contributors and Editors (what is this?)Proteopedia Page Contributors and Editors (what is this?)

OCA