7o2e: Difference between revisions

From Proteopedia
Jump to navigation Jump to search
No edit summary
No edit summary
 
(One intermediate revision by the same user not shown)
Line 1: Line 1:
'''Unreleased structure'''


The entry 7o2e is ON HOLD  until Mar 30 2023
==Crystal structure of the human METTL3-METTL14 complex bound to Compound 21 (ADO_AD_089)==
<StructureSection load='7o2e' size='340' side='right'caption='[[7o2e]], [[Resolution|resolution]] 2.50&Aring;' scene=''>
== Structural highlights ==
<table><tr><td colspan='2'>[[7o2e]] is a 2 chain structure with sequence from [https://en.wikipedia.org/wiki/Homo_sapiens Homo sapiens]. Full crystallographic information is available from [http://oca.weizmann.ac.il/oca-bin/ocashort?id=7O2E OCA]. For a <b>guided tour on the structure components</b> use [https://proteopedia.org/fgij/fg.htm?mol=7O2E FirstGlance]. <br>
</td></tr><tr id='method'><td class="sblockLbl"><b>[[Empirical_models|Method:]]</b></td><td class="sblockDat" id="methodDat">X-ray diffraction, [[Resolution|Resolution]] 2.5&#8491;</td></tr>
<tr id='ligand'><td class="sblockLbl"><b>[[Ligand|Ligands:]]</b></td><td class="sblockDat" id="ligandDat"><scene name='pdbligand=ACT:ACETATE+ION'>ACT</scene>, <scene name='pdbligand=UZH:4-[4-[(4,4-dimethylpiperidin-1-yl)methyl]-3-fluoranyl-phenyl]-9-[6-(methylamino)pyrimidin-4-yl]-1,4,9-triazaspiro[5.5]undecan-2-one'>UZH</scene></td></tr>
<tr id='resources'><td class="sblockLbl"><b>Resources:</b></td><td class="sblockDat"><span class='plainlinks'>[https://proteopedia.org/fgij/fg.htm?mol=7o2e FirstGlance], [http://oca.weizmann.ac.il/oca-bin/ocaids?id=7o2e OCA], [https://pdbe.org/7o2e PDBe], [https://www.rcsb.org/pdb/explore.do?structureId=7o2e RCSB], [https://www.ebi.ac.uk/pdbsum/7o2e PDBsum], [https://prosat.h-its.org/prosat/prosatexe?pdbcode=7o2e ProSAT]</span></td></tr>
</table>
== Function ==
[https://www.uniprot.org/uniprot/MTA70_HUMAN MTA70_HUMAN] N6-methyltransferase that methylates adenosine residues of some RNAs and acts as a regulator of the circadian clock, differentiation of embryonic stem cells and primary miRNA processing. N6-methyladenosine (m6A), which takes place at the 5'-[AG]GAC-3' consensus sites of some mRNAs, plays a role in the efficiency of mRNA splicing, processing, translation efficiency, editing and mRNA stability (PubMed:22575960, PubMed:24284625, PubMed:25719671, PubMed:25799998, PubMed:26321680, PubMed:26593424, PubMed:9409616). M6A regulates the length of the circadian clock: acts as a early pace-setter in the circadian loop by putting mRNA production on a fast-track for facilitating nuclear processing, thereby providing an early point of control in setting the dynamics of the feedback loop (By similarity). M6A also acts as a regulator of mRNA stability: in embryonic stem cells (ESCs), m6A methylation of mRNAs encoding key naive pluripotency-promoting transcripts results in transcript destabilization, promoting differentiation of ESCs (By similarity). M6A also takes place in other RNA molecules, such as primary miRNA (pri-miRNAs) (PubMed:25799998). Mediates methylation of pri-miRNAs, marking them for recognition and processing by DGCR8 (PubMed:25799998).[UniProtKB:Q8C3P7]<ref>PMID:22575960</ref> <ref>PMID:24284625</ref> <ref>PMID:25719671</ref> <ref>PMID:25799998</ref> <ref>PMID:26321680</ref> <ref>PMID:26593424</ref> <ref>PMID:9409616</ref>
<div style="background-color:#fffaf0;">
== Publication Abstract from PubMed ==
N(6)-methyladenosine (m(6)A) is the most frequent of the 160 RNA modifications reported so far. Accumulating evidence suggests that the METTL3/METTL14 protein complex, part of the m(6)A regulation machinery, is a key player in a variety of diseases including several types of cancer, type 2 diabetes, and viral infections. Here we report on a protein crystallography-based medicinal chemistry optimization of a METTL3 hit compound that has resulted in a 1400-fold potency improvement (IC(50) of 5 nM for the lead compound 22 (UZH2) in a time-resolved Forster resonance energy transfer (TR-FRET) assay). The series has favorable ADME properties as physicochemical characteristics were taken into account during hit optimization. UZH2 shows target engagement in cells and is able to reduce the m(6)A/A level of polyadenylated RNA in MOLM-13 (acute myeloid leukemia) and PC-3 (prostate cancer) cell lines.


Authors: Bedi, R.K., Dolbois, A., Caflisch, A.
1,4,9-Triazaspiro[5.5]undecan-2-one Derivatives as Potent and Selective METTL3 Inhibitors.,Dolbois A, Bedi RK, Bochenkova E, Muller A, Moroz-Omori EV, Huang D, Caflisch A J Med Chem. 2021 Sep 9;64(17):12738-12760. doi: 10.1021/acs.jmedchem.1c00773. , Epub 2021 Aug 25. PMID:34431664<ref>PMID:34431664</ref>


Description: Crystal structure of the human METTL3-METTL14 complex bound to Compound 21 (ADO_AD_089)
From MEDLINE&reg;/PubMed&reg;, a database of the U.S. National Library of Medicine.<br>
[[Category: Unreleased Structures]]
</div>
[[Category: Dolbois, A]]
<div class="pdbe-citations 7o2e" style="background-color:#fffaf0;"></div>
[[Category: Caflisch, A]]
== References ==
[[Category: Bedi, R.K]]
<references/>
__TOC__
</StructureSection>
[[Category: Homo sapiens]]
[[Category: Large Structures]]
[[Category: Bedi RK]]
[[Category: Caflisch A]]
[[Category: Dolbois A]]

Latest revision as of 15:43, 1 February 2024

Crystal structure of the human METTL3-METTL14 complex bound to Compound 21 (ADO_AD_089)Crystal structure of the human METTL3-METTL14 complex bound to Compound 21 (ADO_AD_089)

Structural highlights

7o2e is a 2 chain structure with sequence from Homo sapiens. Full crystallographic information is available from OCA. For a guided tour on the structure components use FirstGlance.
Method:X-ray diffraction, Resolution 2.5Å
Ligands:,
Resources:FirstGlance, OCA, PDBe, RCSB, PDBsum, ProSAT

Function

MTA70_HUMAN N6-methyltransferase that methylates adenosine residues of some RNAs and acts as a regulator of the circadian clock, differentiation of embryonic stem cells and primary miRNA processing. N6-methyladenosine (m6A), which takes place at the 5'-[AG]GAC-3' consensus sites of some mRNAs, plays a role in the efficiency of mRNA splicing, processing, translation efficiency, editing and mRNA stability (PubMed:22575960, PubMed:24284625, PubMed:25719671, PubMed:25799998, PubMed:26321680, PubMed:26593424, PubMed:9409616). M6A regulates the length of the circadian clock: acts as a early pace-setter in the circadian loop by putting mRNA production on a fast-track for facilitating nuclear processing, thereby providing an early point of control in setting the dynamics of the feedback loop (By similarity). M6A also acts as a regulator of mRNA stability: in embryonic stem cells (ESCs), m6A methylation of mRNAs encoding key naive pluripotency-promoting transcripts results in transcript destabilization, promoting differentiation of ESCs (By similarity). M6A also takes place in other RNA molecules, such as primary miRNA (pri-miRNAs) (PubMed:25799998). Mediates methylation of pri-miRNAs, marking them for recognition and processing by DGCR8 (PubMed:25799998).[UniProtKB:Q8C3P7][1] [2] [3] [4] [5] [6] [7]

Publication Abstract from PubMed

N(6)-methyladenosine (m(6)A) is the most frequent of the 160 RNA modifications reported so far. Accumulating evidence suggests that the METTL3/METTL14 protein complex, part of the m(6)A regulation machinery, is a key player in a variety of diseases including several types of cancer, type 2 diabetes, and viral infections. Here we report on a protein crystallography-based medicinal chemistry optimization of a METTL3 hit compound that has resulted in a 1400-fold potency improvement (IC(50) of 5 nM for the lead compound 22 (UZH2) in a time-resolved Forster resonance energy transfer (TR-FRET) assay). The series has favorable ADME properties as physicochemical characteristics were taken into account during hit optimization. UZH2 shows target engagement in cells and is able to reduce the m(6)A/A level of polyadenylated RNA in MOLM-13 (acute myeloid leukemia) and PC-3 (prostate cancer) cell lines.

1,4,9-Triazaspiro[5.5]undecan-2-one Derivatives as Potent and Selective METTL3 Inhibitors.,Dolbois A, Bedi RK, Bochenkova E, Muller A, Moroz-Omori EV, Huang D, Caflisch A J Med Chem. 2021 Sep 9;64(17):12738-12760. doi: 10.1021/acs.jmedchem.1c00773. , Epub 2021 Aug 25. PMID:34431664[8]

From MEDLINE®/PubMed®, a database of the U.S. National Library of Medicine.

References

  1. Dominissini D, Moshitch-Moshkovitz S, Schwartz S, Salmon-Divon M, Ungar L, Osenberg S, Cesarkas K, Jacob-Hirsch J, Amariglio N, Kupiec M, Sorek R, Rechavi G. Topology of the human and mouse m6A RNA methylomes revealed by m6A-seq. Nature. 2012 Apr 29;485(7397):201-6. doi: 10.1038/nature11112. PMID:22575960 doi:http://dx.doi.org/10.1038/nature11112
  2. Wang X, Lu Z, Gomez A, Hon GC, Yue Y, Han D, Fu Y, Parisien M, Dai Q, Jia G, Ren B, Pan T, He C. N6-methyladenosine-dependent regulation of messenger RNA stability. Nature. 2014 Jan 2;505(7481):117-20. doi: 10.1038/nature12730. Epub 2013 Nov 27. PMID:24284625 doi:http://dx.doi.org/10.1038/nature12730
  3. Liu N, Dai Q, Zheng G, He C, Parisien M, Pan T. N(6)-methyladenosine-dependent RNA structural switches regulate RNA-protein interactions. Nature. 2015 Feb 26;518(7540):560-4. doi: 10.1038/nature14234. PMID:25719671 doi:http://dx.doi.org/10.1038/nature14234
  4. Alarcon CR, Lee H, Goodarzi H, Halberg N, Tavazoie SF. N6-methyladenosine marks primary microRNAs for processing. Nature. 2015 Mar 26;519(7544):482-5. doi: 10.1038/nature14281. Epub 2015 Mar 18. PMID:25799998 doi:http://dx.doi.org/10.1038/nature14281
  5. Alarcon CR, Goodarzi H, Lee H, Liu X, Tavazoie S, Tavazoie SF. HNRNPA2B1 Is a Mediator of m(6)A-Dependent Nuclear RNA Processing Events. Cell. 2015 Sep 10;162(6):1299-308. doi: 10.1016/j.cell.2015.08.011. Epub 2015 Aug, 27. PMID:26321680 doi:http://dx.doi.org/10.1016/j.cell.2015.08.011
  6. Meyer KD, Patil DP, Zhou J, Zinoviev A, Skabkin MA, Elemento O, Pestova TV, Qian SB, Jaffrey SR. 5' UTR m(6)A Promotes Cap-Independent Translation. Cell. 2015 Nov 5;163(4):999-1010. doi: 10.1016/j.cell.2015.10.012. Epub 2015 Oct , 22. PMID:26593424 doi:http://dx.doi.org/10.1016/j.cell.2015.10.012
  7. Bokar JA, Shambaugh ME, Polayes D, Matera AG, Rottman FM. Purification and cDNA cloning of the AdoMet-binding subunit of the human mRNA (N6-adenosine)-methyltransferase. RNA. 1997 Nov;3(11):1233-47. PMID:9409616
  8. Dolbois A, Bedi RK, Bochenkova E, Müller A, Moroz-Omori EV, Huang D, Caflisch A. 1,4,9-Triazaspiro[5.5]undecan-2-one Derivatives as Potent and Selective METTL3 Inhibitors. J Med Chem. 2021 Sep 9;64(17):12738-12760. PMID:34431664 doi:10.1021/acs.jmedchem.1c00773

7o2e, resolution 2.50Å

Drag the structure with the mouse to rotate

Proteopedia Page Contributors and Editors (what is this?)Proteopedia Page Contributors and Editors (what is this?)

OCA