7b7n: Difference between revisions
No edit summary |
No edit summary |
||
(One intermediate revision by the same user not shown) | |||
Line 1: | Line 1: | ||
==== | ==Human herpesvirus-8 gH/gL in complex with EphA2== | ||
<StructureSection load='7b7n' size='340' side='right'caption='[[7b7n]]' scene=''> | <StructureSection load='7b7n' size='340' side='right'caption='[[7b7n]], [[Resolution|resolution]] 2.69Å' scene=''> | ||
== Structural highlights == | == Structural highlights == | ||
<table><tr><td colspan='2'>Full crystallographic information is available from [http://oca.weizmann.ac.il/oca-bin/ocashort?id= OCA]. For a <b>guided tour on the structure components</b> use [ | <table><tr><td colspan='2'>[[7b7n]] is a 3 chain structure with sequence from [https://en.wikipedia.org/wiki/Homo_sapiens Homo sapiens] and [https://en.wikipedia.org/wiki/Human_gammaherpesvirus_8 Human gammaherpesvirus 8]. Full crystallographic information is available from [http://oca.weizmann.ac.il/oca-bin/ocashort?id=7B7N OCA]. For a <b>guided tour on the structure components</b> use [https://proteopedia.org/fgij/fg.htm?mol=7B7N FirstGlance]. <br> | ||
</td></tr><tr id='resources'><td class="sblockLbl"><b>Resources:</b></td><td class="sblockDat"><span class='plainlinks'>[ | </td></tr><tr id='method'><td class="sblockLbl"><b>[[Empirical_models|Method:]]</b></td><td class="sblockDat" id="methodDat">X-ray diffraction, [[Resolution|Resolution]] 2.69Å</td></tr> | ||
<tr id='ligand'><td class="sblockLbl"><b>[[Ligand|Ligands:]]</b></td><td class="sblockDat" id="ligandDat"><scene name='pdbligand=CL:CHLORIDE+ION'>CL</scene>, <scene name='pdbligand=NA:SODIUM+ION'>NA</scene>, <scene name='pdbligand=NAG:N-ACETYL-D-GLUCOSAMINE'>NAG</scene></td></tr> | |||
<tr id='resources'><td class="sblockLbl"><b>Resources:</b></td><td class="sblockDat"><span class='plainlinks'>[https://proteopedia.org/fgij/fg.htm?mol=7b7n FirstGlance], [http://oca.weizmann.ac.il/oca-bin/ocaids?id=7b7n OCA], [https://pdbe.org/7b7n PDBe], [https://www.rcsb.org/pdb/explore.do?structureId=7b7n RCSB], [https://www.ebi.ac.uk/pdbsum/7b7n PDBsum], [https://prosat.h-its.org/prosat/prosatexe?pdbcode=7b7n ProSAT]</span></td></tr> | |||
</table> | </table> | ||
== Disease == | |||
[https://www.uniprot.org/uniprot/EPHA2_HUMAN EPHA2_HUMAN] Genetic variations in EPHA2 are the cause of susceptibility to cataract cortical age-related type 2 (ARCC2) [MIM:[https://omim.org/entry/613020 613020]. A developmental punctate opacity common in the cortex and present in most lenses. The cataract is white or cerulean, increases in number with age, but rarely affects vision.<ref>PMID:19573808</ref> <ref>PMID:19649315</ref> Defects in EPHA2 are the cause of cataract posterior polar type 1 (CTPP1) [MIM:[https://omim.org/entry/116600 116600]. A subcapsular opacity, usually disk-shaped, located at the back of the lens. It can have a marked effect on visual acuity.<ref>PMID:19573808</ref> <ref>PMID:19005574</ref> <ref>PMID:19306328</ref> <ref>PMID:22570727</ref> Note=Overexpressed in several cancer types and promotes malignancy.<ref>PMID:19573808</ref> | |||
== Function == | |||
[https://www.uniprot.org/uniprot/EPHA2_HUMAN EPHA2_HUMAN] Receptor tyrosine kinase which binds promiscuously membrane-bound ephrin-A family ligands residing on adjacent cells, leading to contact-dependent bidirectional signaling into neighboring cells. The signaling pathway downstream of the receptor is referred to as forward signaling while the signaling pathway downstream of the ephrin ligand is referred to as reverse signaling. Activated by the ligand ephrin-A1/EFNA1 regulates migration, integrin-mediated adhesion, proliferation and differentiation of cells. Regulates cell adhesion and differentiation through DSG1/desmoglein-1 and inhibition of the ERK1/ERK2 (MAPK3/MAPK1, respectively) signaling pathway. May also participate in UV radiation-induced apoptosis and have a ligand-independent stimulatory effect on chemotactic cell migration. During development, may function in distinctive aspects of pattern formation and subsequently in development of several fetal tissues. Involved for instance in angiogenesis, in early hindbrain development and epithelial proliferation and branching morphogenesis during mammary gland development. Engaged by the ligand ephrin-A5/EFNA5 may regulate lens fiber cells shape and interactions and be important for lens transparency development and maintenance. With ephrin-A2/EFNA2 may play a role in bone remodeling through regulation of osteoclastogenesis and osteoblastogenesis.<ref>PMID:10655584</ref> <ref>PMID:16236711</ref> <ref>PMID:18339848</ref> <ref>PMID:19573808</ref> <ref>PMID:20679435</ref> <ref>PMID:20861311</ref> | |||
<div style="background-color:#fffaf0;"> | |||
== Publication Abstract from PubMed == | |||
Human herpesvirus 8 (HHV-8) is an oncogenic virus that enters cells by fusion of the viral and endosomal cellular membranes in a process mediated by viral surface glycoproteins. One of the cellular receptors hijacked by HHV-8 to gain access to cells is the EphA2 tyrosine kinase receptor, and the mechanistic basis of EphA2-mediated viral entry remains unclear. Using X-ray structure analysis, targeted mutagenesis, and binding studies, we here show that the HHV-8 envelope glycoprotein complex H and L (gH/gL) binds with subnanomolar affinity to EphA2 via molecular mimicry of the receptor's cellular ligands, ephrins (Eph family receptor interacting proteins), revealing a pivotal role for the conserved gH residue E52 and the amino-terminal peptide of gL. Using FSI-FRET and cell contraction assays, we further demonstrate that the gH/gL complex also functionally mimics ephrin ligand by inducing EphA2 receptor association via its dimerization interface, thus triggering receptor signaling for cytoskeleton remodeling. These results now provide novel insight into the entry mechanism of HHV-8, opening avenues for the search of therapeutic agents that could interfere with HHV-8-related diseases. | |||
Human herpesvirus 8 molecular mimicry of ephrin ligands facilitates cell entry and triggers EphA2 signaling.,Light TP, Brun D, Guardado-Calvo P, Pederzoli R, Haouz A, Neipel F, Rey FA, Hristova K, Backovic M PLoS Biol. 2021 Sep 9;19(9):e3001392. doi: 10.1371/journal.pbio.3001392. , eCollection 2021 Sep. PMID:34499637<ref>PMID:34499637</ref> | |||
From MEDLINE®/PubMed®, a database of the U.S. National Library of Medicine.<br> | |||
</div> | |||
<div class="pdbe-citations 7b7n" style="background-color:#fffaf0;"></div> | |||
==See Also== | |||
*[[Ephrin receptor 3D structures|Ephrin receptor 3D structures]] | |||
== References == | |||
<references/> | |||
__TOC__ | __TOC__ | ||
</StructureSection> | </StructureSection> | ||
[[Category: Homo sapiens]] | |||
[[Category: Human gammaherpesvirus 8]] | |||
[[Category: Large Structures]] | [[Category: Large Structures]] | ||
[[Category: | [[Category: Backovic M]] | ||
[[Category: Guardado-Calvo P]] | |||
[[Category: Pederzoli R]] | |||
[[Category: Rey FA]] |