6zrz: Difference between revisions
No edit summary |
No edit summary |
||
(One intermediate revision by the same user not shown) | |||
Line 1: | Line 1: | ||
==Crystal structure of 5-dimethylallyl tryptophan synthase from Streptomyces coelicolor in complex with DMASPP and Trp== | ==Crystal structure of 5-dimethylallyl tryptophan synthase from Streptomyces coelicolor in complex with DMASPP and Trp== | ||
<StructureSection load='6zrz' size='340' side='right'caption='[[6zrz]]' scene=''> | <StructureSection load='6zrz' size='340' side='right'caption='[[6zrz]], [[Resolution|resolution]] 1.70Å' scene=''> | ||
== Structural highlights == | == Structural highlights == | ||
<table><tr><td colspan='2'>Full crystallographic information is available from [http://oca.weizmann.ac.il/oca-bin/ocashort?id=6ZRZ OCA]. For a <b>guided tour on the structure components</b> use [ | <table><tr><td colspan='2'>[[6zrz]] is a 2 chain structure with sequence from [https://en.wikipedia.org/wiki/Streptomyces_coelicolor Streptomyces coelicolor]. Full crystallographic information is available from [http://oca.weizmann.ac.il/oca-bin/ocashort?id=6ZRZ OCA]. For a <b>guided tour on the structure components</b> use [https://proteopedia.org/fgij/fg.htm?mol=6ZRZ FirstGlance]. <br> | ||
</td></tr><tr id='resources'><td class="sblockLbl"><b>Resources:</b></td><td class="sblockDat"><span class='plainlinks'>[ | </td></tr><tr id='method'><td class="sblockLbl"><b>[[Empirical_models|Method:]]</b></td><td class="sblockDat" id="methodDat">X-ray diffraction, [[Resolution|Resolution]] 1.696Å</td></tr> | ||
<tr id='ligand'><td class="sblockLbl"><b>[[Ligand|Ligands:]]</b></td><td class="sblockDat" id="ligandDat"><scene name='pdbligand=6C7:S-(3-METHYLBUT-2-EN-1-YL)+TRIHYDROGEN+THIODIPHOSPHATE'>6C7</scene>, <scene name='pdbligand=TRP:TRYPTOPHAN'>TRP</scene></td></tr> | |||
<tr id='resources'><td class="sblockLbl"><b>Resources:</b></td><td class="sblockDat"><span class='plainlinks'>[https://proteopedia.org/fgij/fg.htm?mol=6zrz FirstGlance], [http://oca.weizmann.ac.il/oca-bin/ocaids?id=6zrz OCA], [https://pdbe.org/6zrz PDBe], [https://www.rcsb.org/pdb/explore.do?structureId=6zrz RCSB], [https://www.ebi.ac.uk/pdbsum/6zrz PDBsum], [https://prosat.h-its.org/prosat/prosatexe?pdbcode=6zrz ProSAT]</span></td></tr> | |||
</table> | </table> | ||
<div style="background-color:#fffaf0;"> | |||
== Publication Abstract from PubMed == | |||
Prenylation is a process widely prevalent in primary and secondary metabolism, contributing to functionality and chemical diversity in natural systems. Due to their high regio- and chemoselectivities, prenyltransferases are also valuable tools for creation of new compounds by chemoenzymatic synthesis and synthetic biology. Over the last ten years, biochemical and structural investigations shed light on the mechanism and key residues that control the catalytic process, but to date crucial information on how certain prenyltransferases control regioselectivity and chemoselectivity was still lacking. Here, we advance a general understanding of the enzyme family by contributing the first structure of a tryptophan C5-prenyltransferase 5-DMATS. Additinallyi, the structure of a bacterial tryptophan C6-prenyltransferase 6-DMATS was solved. Analysis and comparison of both substrate-bound complexes led to the identification of key residues for catalysis. Next, site-directed mutagenesis was successfully implemented to not only modify the prenyl donor specificity but also to redirect the prenylation, thereby switching the regioselectivity of 6-DMATS to that of 5-DMATS. The general strategy of structure-guided protein engineering should be applicable to other related prenyltransferases, thus enabling the production of novel prenylated compounds. | |||
Reprogramming substrate and catalytic promiscuity of tryptophan prenyltransferases.,Ostertag E, Zheng L, Broger K, Stehle T, Li SM, Zocher G J Mol Biol. 2020 Nov 26. pii: S0022-2836(20)30644-6. doi:, 10.1016/j.jmb.2020.11.025. PMID:33249189<ref>PMID:33249189</ref> | |||
From MEDLINE®/PubMed®, a database of the U.S. National Library of Medicine.<br> | |||
</div> | |||
<div class="pdbe-citations 6zrz" style="background-color:#fffaf0;"></div> | |||
==See Also== | |||
*[[Tryptophan synthase 3D structures|Tryptophan synthase 3D structures]] | |||
== References == | |||
<references/> | |||
__TOC__ | __TOC__ | ||
</StructureSection> | </StructureSection> | ||
[[Category: Large Structures]] | [[Category: Large Structures]] | ||
[[Category: Streptomyces coelicolor]] | |||
[[Category: Broger K]] | [[Category: Broger K]] | ||
[[Category: Ostertag E]] | [[Category: Ostertag E]] | ||
[[Category: Stehle T]] | [[Category: Stehle T]] | ||
[[Category: Zocher G]] | [[Category: Zocher G]] |
Latest revision as of 14:57, 1 February 2024
Crystal structure of 5-dimethylallyl tryptophan synthase from Streptomyces coelicolor in complex with DMASPP and TrpCrystal structure of 5-dimethylallyl tryptophan synthase from Streptomyces coelicolor in complex with DMASPP and Trp
Structural highlights
Publication Abstract from PubMedPrenylation is a process widely prevalent in primary and secondary metabolism, contributing to functionality and chemical diversity in natural systems. Due to their high regio- and chemoselectivities, prenyltransferases are also valuable tools for creation of new compounds by chemoenzymatic synthesis and synthetic biology. Over the last ten years, biochemical and structural investigations shed light on the mechanism and key residues that control the catalytic process, but to date crucial information on how certain prenyltransferases control regioselectivity and chemoselectivity was still lacking. Here, we advance a general understanding of the enzyme family by contributing the first structure of a tryptophan C5-prenyltransferase 5-DMATS. Additinallyi, the structure of a bacterial tryptophan C6-prenyltransferase 6-DMATS was solved. Analysis and comparison of both substrate-bound complexes led to the identification of key residues for catalysis. Next, site-directed mutagenesis was successfully implemented to not only modify the prenyl donor specificity but also to redirect the prenylation, thereby switching the regioselectivity of 6-DMATS to that of 5-DMATS. The general strategy of structure-guided protein engineering should be applicable to other related prenyltransferases, thus enabling the production of novel prenylated compounds. Reprogramming substrate and catalytic promiscuity of tryptophan prenyltransferases.,Ostertag E, Zheng L, Broger K, Stehle T, Li SM, Zocher G J Mol Biol. 2020 Nov 26. pii: S0022-2836(20)30644-6. doi:, 10.1016/j.jmb.2020.11.025. PMID:33249189[1] From MEDLINE®/PubMed®, a database of the U.S. National Library of Medicine. See AlsoReferences
|
|