6ts2: Difference between revisions
New page: '''Unreleased structure''' The entry 6ts2 is ON HOLD Authors: Roversi, P., Zitzmann, N. Description: Truncated version of Chaetomium thermophilum UDP-Glucose Glucosyl Transferase (UGGT... |
No edit summary |
||
(4 intermediate revisions by the same user not shown) | |||
Line 1: | Line 1: | ||
==Truncated version of Chaetomium thermophilum UDP-Glucose Glucosyl Transferase (UGGT) lacking domain TRXL2 (417-650).== | |||
<StructureSection load='6ts2' size='340' side='right'caption='[[6ts2]], [[Resolution|resolution]] 5.74Å' scene=''> | |||
== Structural highlights == | |||
<table><tr><td colspan='2'>[[6ts2]] is a 4 chain structure with sequence from [https://en.wikipedia.org/wiki/Chaetomium_thermophilum_var._thermophilum_DSM_1495 Chaetomium thermophilum var. thermophilum DSM 1495]. Full crystallographic information is available from [http://oca.weizmann.ac.il/oca-bin/ocashort?id=6TS2 OCA]. For a <b>guided tour on the structure components</b> use [https://proteopedia.org/fgij/fg.htm?mol=6TS2 FirstGlance]. <br> | |||
</td></tr><tr id='method'><td class="sblockLbl"><b>[[Empirical_models|Method:]]</b></td><td class="sblockDat" id="methodDat">X-ray diffraction, [[Resolution|Resolution]] 5.74Å</td></tr> | |||
<tr id='ligand'><td class="sblockLbl"><b>[[Ligand|Ligands:]]</b></td><td class="sblockDat" id="ligandDat"><scene name='pdbligand=BMA:BETA-D-MANNOSE'>BMA</scene>, <scene name='pdbligand=CA:CALCIUM+ION'>CA</scene>, <scene name='pdbligand=MAN:ALPHA-D-MANNOSE'>MAN</scene>, <scene name='pdbligand=NAG:N-ACETYL-D-GLUCOSAMINE'>NAG</scene></td></tr> | |||
<tr id='resources'><td class="sblockLbl"><b>Resources:</b></td><td class="sblockDat"><span class='plainlinks'>[https://proteopedia.org/fgij/fg.htm?mol=6ts2 FirstGlance], [http://oca.weizmann.ac.il/oca-bin/ocaids?id=6ts2 OCA], [https://pdbe.org/6ts2 PDBe], [https://www.rcsb.org/pdb/explore.do?structureId=6ts2 RCSB], [https://www.ebi.ac.uk/pdbsum/6ts2 PDBsum], [https://prosat.h-its.org/prosat/prosatexe?pdbcode=6ts2 ProSAT]</span></td></tr> | |||
</table> | |||
== Function == | |||
[https://www.uniprot.org/uniprot/G0SB58_CHATD G0SB58_CHATD] | |||
<div style="background-color:#fffaf0;"> | |||
== Publication Abstract from PubMed == | |||
UDP-glucose:glycoprotein glucosyltransferase (UGGT) flags misfolded glycoproteins for ER retention. We report crystal structures of full-length Chaetomium thermophilum UGGT (CtUGGT), two CtUGGT double-cysteine mutants, and its TRXL2 domain truncation (CtUGGT-DeltaTRXL2). CtUGGT molecular dynamics (MD) simulations capture extended conformations and reveal clamping, bending, and twisting inter-domain movements. We name "Parodi limit" the maximum distance on the same glycoprotein between a site of misfolding and an N-linked glycan that can be reglucosylated by monomeric UGGT in vitro, in response to recognition of misfold at that site. Based on the MD simulations, we estimate the Parodi limit as around 70-80 A. Frequency distributions of distances between glycoprotein residues and their closest N-linked glycosylation sites in glycoprotein crystal structures suggests relevance of the Parodi limit to UGGT activity in vivo. Our data support a "one-size-fits-all adjustable spanner" UGGT substrate recognition model, with an essential role for the UGGT TRXL2 domain. | |||
Clamping, bending, and twisting inter-domain motions in the misfold-recognizing portion of UDP-glucose:glycoprotein glucosyltransferase.,Modenutti CP, Blanco Capurro JI, Ibba R, Alonzi DS, Song MN, Vasiljevic S, Kumar A, Chandran AV, Tax G, Marti L, Hill JC, Lia A, Hensen M, Waksman T, Rushton J, Rubichi S, Santino A, Marti MA, Zitzmann N, Roversi P Structure. 2020 Dec 16. pii: S0969-2126(20)30464-0. doi:, 10.1016/j.str.2020.11.017. PMID:33352114<ref>PMID:33352114</ref> | |||
From MEDLINE®/PubMed®, a database of the U.S. National Library of Medicine.<br> | |||
[[Category: | </div> | ||
[[Category: | <div class="pdbe-citations 6ts2" style="background-color:#fffaf0;"></div> | ||
[[Category: | == References == | ||
<references/> | |||
__TOC__ | |||
</StructureSection> | |||
[[Category: Chaetomium thermophilum var. thermophilum DSM 1495]] | |||
[[Category: Large Structures]] | |||
[[Category: Roversi P]] | |||
[[Category: Zitzmann N]] |
Latest revision as of 16:08, 24 January 2024
Truncated version of Chaetomium thermophilum UDP-Glucose Glucosyl Transferase (UGGT) lacking domain TRXL2 (417-650).Truncated version of Chaetomium thermophilum UDP-Glucose Glucosyl Transferase (UGGT) lacking domain TRXL2 (417-650).
Structural highlights
FunctionPublication Abstract from PubMedUDP-glucose:glycoprotein glucosyltransferase (UGGT) flags misfolded glycoproteins for ER retention. We report crystal structures of full-length Chaetomium thermophilum UGGT (CtUGGT), two CtUGGT double-cysteine mutants, and its TRXL2 domain truncation (CtUGGT-DeltaTRXL2). CtUGGT molecular dynamics (MD) simulations capture extended conformations and reveal clamping, bending, and twisting inter-domain movements. We name "Parodi limit" the maximum distance on the same glycoprotein between a site of misfolding and an N-linked glycan that can be reglucosylated by monomeric UGGT in vitro, in response to recognition of misfold at that site. Based on the MD simulations, we estimate the Parodi limit as around 70-80 A. Frequency distributions of distances between glycoprotein residues and their closest N-linked glycosylation sites in glycoprotein crystal structures suggests relevance of the Parodi limit to UGGT activity in vivo. Our data support a "one-size-fits-all adjustable spanner" UGGT substrate recognition model, with an essential role for the UGGT TRXL2 domain. Clamping, bending, and twisting inter-domain motions in the misfold-recognizing portion of UDP-glucose:glycoprotein glucosyltransferase.,Modenutti CP, Blanco Capurro JI, Ibba R, Alonzi DS, Song MN, Vasiljevic S, Kumar A, Chandran AV, Tax G, Marti L, Hill JC, Lia A, Hensen M, Waksman T, Rushton J, Rubichi S, Santino A, Marti MA, Zitzmann N, Roversi P Structure. 2020 Dec 16. pii: S0969-2126(20)30464-0. doi:, 10.1016/j.str.2020.11.017. PMID:33352114[1] From MEDLINE®/PubMed®, a database of the U.S. National Library of Medicine. References
|
|