6slm: Difference between revisions

m Protected "6slm" [edit=sysop:move=sysop]
No edit summary
 
(2 intermediate revisions by the same user not shown)
Line 1: Line 1:
'''Unreleased structure'''


The entry 6slm is ON HOLD  until Paper Publication
==Crystal structure of full-length HPV31 E6 oncoprotein in complex with LXXLL peptide of ubiquitin ligase E6AP==
<StructureSection load='6slm' size='340' side='right'caption='[[6slm]], [[Resolution|resolution]] 2.80&Aring;' scene=''>
== Structural highlights ==
<table><tr><td colspan='2'>[[6slm]] is a 1 chain structure with sequence from [https://en.wikipedia.org/wiki/Escherichia_coli_K-12 Escherichia coli K-12], [https://en.wikipedia.org/wiki/Homo_sapiens Homo sapiens] and [https://en.wikipedia.org/wiki/Human_papillomavirus_31 Human papillomavirus 31]. Full crystallographic information is available from [http://oca.weizmann.ac.il/oca-bin/ocashort?id=6SLM OCA]. For a <b>guided tour on the structure components</b> use [https://proteopedia.org/fgij/fg.htm?mol=6SLM FirstGlance]. <br>
</td></tr><tr id='method'><td class="sblockLbl"><b>[[Empirical_models|Method:]]</b></td><td class="sblockDat" id="methodDat">X-ray diffraction, [[Resolution|Resolution]] 2.8&#8491;</td></tr>
<tr id='ligand'><td class="sblockLbl"><b>[[Ligand|Ligands:]]</b></td><td class="sblockDat" id="ligandDat"><scene name='pdbligand=GLC:ALPHA-D-GLUCOSE'>GLC</scene>, <scene name='pdbligand=GOL:GLYCEROL'>GOL</scene>, <scene name='pdbligand=PRD_900001:alpha-maltose'>PRD_900001</scene>, <scene name='pdbligand=ZN:ZINC+ION'>ZN</scene></td></tr>
<tr id='resources'><td class="sblockLbl"><b>Resources:</b></td><td class="sblockDat"><span class='plainlinks'>[https://proteopedia.org/fgij/fg.htm?mol=6slm FirstGlance], [http://oca.weizmann.ac.il/oca-bin/ocaids?id=6slm OCA], [https://pdbe.org/6slm PDBe], [https://www.rcsb.org/pdb/explore.do?structureId=6slm RCSB], [https://www.ebi.ac.uk/pdbsum/6slm PDBsum], [https://prosat.h-its.org/prosat/prosatexe?pdbcode=6slm ProSAT]</span></td></tr>
</table>
== Disease ==
[https://www.uniprot.org/uniprot/UBE3A_HUMAN UBE3A_HUMAN] Defects in UBE3A are a cause of Angelman syndrome (AS) [MIM:[https://omim.org/entry/105830 105830]; also known as 'happy puppet syndrome'. AS is characterized by features of severe motor and intellectual retardation, microcephaly, ataxia, frequent jerky limb movements and flapping of the arms and hands, hypotonia, hyperactivity, hypopigmentation, seizures, absence of speech, frequent smiling and episodes of paroxysmal laughter, and an unusual facies characterized by macrostomia, a large mandible and open-mouthed expression, a great propensity for protruding the tongue ('tongue thrusting'), and an occipital groove.<ref>PMID:10508479</ref> <ref>PMID:9585605</ref>
== Function ==
[https://www.uniprot.org/uniprot/MALE_ECOLI MALE_ECOLI] Involved in the high-affinity maltose membrane transport system MalEFGK. Initial receptor for the active transport of and chemotaxis toward maltooligosaccharides.[https://www.uniprot.org/uniprot/VE6_HPV31 VE6_HPV31] Plays a major role in the induction and maintenance of cellular transformation. Acts mainly as an oncoprotein by stimulating the destruction of many host cell key regulatory proteins. E6 associates with host UBE3A/E6-AP ubiquitin-protein ligase, and inactivates tumor suppressors TP53 and TP73 by targeting them to the 26S proteasome for degradation. In turn, DNA damage and chromosomal instabilities increase and lead to cell proliferation and cancer development. The complex E6/E6AP targets several other substrates to degradation via the proteasome including host DLG1 or NFX1, a repressor of human telomerase reverse transcriptase (hTERT). The resulting increased expression of hTERT prevents the shortening of telomere length leading to cell immortalization. Other cellular targets including BAK1, Fas-associated death domain-containing protein (FADD) and procaspase 8, are degraded by E6/E6AP causing inhibition of apoptosis. E6 also inhibits immune response by interacting with host IRF3 and TYK2. These interactions prevent IRF3 transcriptional activities and inhibit TYK2-mediated JAK-STAT activation by interferon alpha resulting in inhibition of the interferon signaling pathway.[HAMAP-Rule:MF_04006][https://www.uniprot.org/uniprot/UBE3A_HUMAN UBE3A_HUMAN] E3 ubiquitin-protein ligase which accepts ubiquitin from an E2 ubiquitin-conjugating enzyme in the form of a thioester and transfers it to its substrates. Several substrates have been identified including the RAD23A and RAD23B, MCM7 (which is involved in DNA replication), annexin A1, the PML tumor suppressor, and the cell cycle regulator CDKN1B. Catalyzes the high-risk human papilloma virus E6-mediated ubiquitination of p53/TP53, contributing to the neoplastic progression of cells infected by these viruses. Additionally, may function as a cellular quality control ubiquitin ligase by helping the degradation of the cytoplasmic misfolded proteins. Finally, UBE3A also promotes its own degradation in vivo.<ref>PMID:10373495</ref> <ref>PMID:19325566</ref> <ref>PMID:19233847</ref> <ref>PMID:19204938</ref> <ref>PMID:19591933</ref> <ref>PMID:22645313</ref>
<div style="background-color:#fffaf0;">
== Publication Abstract from PubMed ==
The degradation of p53 is a hallmark of high-risk human papillomaviruses (HPVs) of the alpha genus and HPV-related carcinogenicity. The oncoprotein E6 forms a ternary complex with the E3 ubiquitin ligase E6-associated protein (E6AP) and tumor suppressor protein p53 targeting p53 for ubiquitination. The extent of p53 degradation by different E6 proteins varies greatly, even for the closely related HPV16 and HPV31. HPV16 E6 and HPV31 E6 display high sequence identity ( approximately 67%). We report here, for the first time, the structure of HPV31 E6 bound to the LxxLL motif of E6AP. HPV16 E6 and HPV31 E6 are structurally very similar, in agreement with the high sequence conservation. Both E6 proteins bind E6AP and degrade p53. However, the binding affinities of 31 E6 to the LxxLL motif of E6AP and p53, respectively, are reduced 2-fold and 5.4-fold compared to 16 E6. The affinity of E6-E6AP-p53 ternary complex formation parallels the efficacy of the subsequent reaction, namely, degradation of p53. Therefore, closely related E6 proteins addressing the same cellular targets may still diverge in their binding efficiencies, possibly explaining their different phenotypic or pathological impacts.IMPORTANCE Variations of carcinogenicity of human papillomaviruses are related to variations of the E6 and E7 interactome. While different HPV species and genera are known to target distinct host proteins, the fine differences between E6 and E7 of closely related HPVs, supposed to target the same cellular protein pools, remain to be addressed. We compare the oncogenic E6 proteins of the closely related high-risk HPV31 and HPV16 with regard to their structure and their efficiency of ternary complex formation with their cellular targets p53 and E6AP, which results in p53 degradation. We solved the crystal structure of 31 E6 bound to the E6AP LxxLL motif. HPV16 E6 and 31 E6 structures are highly similar, but a few sequence variations lead to different protein contacts within the ternary complex and, as quantified here, an overall lower binding affinity of 31 E6 than 16 E6. These results align with the observed lower p53 degradation potential of 31 E6.


Authors: Conrady, M., Gogl, G., Cousido-Siah, A., Mitschler, A., Trave, G., Simon, C.
Structure of High-Risk Papillomavirus 31 E6 Oncogenic Protein and Characterization of E6/E6AP/p53 Complex Formation.,Conrady MC, Suarez I, Gogl G, Frecot DI, Bonhoure A, Kostmann C, Cousido-Siah A, Mitschler A, Lim J, Masson M, Iftner T, Stubenrauch F, Trave G, Simon C J Virol. 2020 Dec 22;95(2). pii: JVI.00730-20. doi: 10.1128/JVI.00730-20. Print, 2020 Dec 22. PMID:33115863<ref>PMID:33115863</ref>


Description: Crystal structure of full-length HPV31 E6 oncoprotein in complex with LXXLL peptide of ubiquitin ligase E6AP
From MEDLINE&reg;/PubMed&reg;, a database of the U.S. National Library of Medicine.<br>
[[Category: Unreleased Structures]]
</div>
[[Category: Conrady, M]]
<div class="pdbe-citations 6slm" style="background-color:#fffaf0;"></div>
[[Category: Cousido-Siah, A]]
 
[[Category: Mitschler, A]]
==See Also==
[[Category: Gogl, G]]
*[[Maltose-binding protein 3D structures|Maltose-binding protein 3D structures]]
[[Category: Trave, G]]
== References ==
[[Category: Simon, C]]
<references/>
__TOC__
</StructureSection>
[[Category: Escherichia coli K-12]]
[[Category: Homo sapiens]]
[[Category: Human papillomavirus 31]]
[[Category: Large Structures]]
[[Category: Conrady M]]
[[Category: Cousido-Siah A]]
[[Category: Gogl G]]
[[Category: Mitschler A]]
[[Category: Simon C]]
[[Category: Trave G]]

Proteopedia Page Contributors and Editors (what is this?)Proteopedia Page Contributors and Editors (what is this?)

OCA