M2 Proton Channel: Difference between revisions
Michal Harel (talk | contribs) No edit summary |
No edit summary |
||
(3 intermediate revisions by one other user not shown) | |||
Line 1: | Line 1: | ||
<StructureSection load='1nyj' size='340' side='right' caption='The closed state structure of M2 protein H+ channel by solid state NMR spectroscopy ([[1nyj]])' scene=''> | |||
== M2 Proton Channel from ''Influenza'' A Virus == | == M2 Proton Channel from ''Influenza'' A Virus == | ||
== Background == | == Background == | ||
The M2 proton channel is a key protein that leads to viral infection.<ref name="Takeuchi" /> The M2 proton channel acidifies the virion which allows the viral matrix protein (M1) to disassociate from the ribonucleoprotein (RNP).<ref name="Wu">PMID:12972147 </ref> This allows the RNP to be transported to the nucleus of the cell. Several recent studies have looked at the effects of <scene name='User:Sarah_Henke/Sandbox_1/Amantadine/1'>amantadine</scene> ([[Symmetrel]])<ref name="Stouffer">PMID:18235504 </ref> and <scene name='User:Sarah_Henke/Sandbox_1/Rimantadine/1'>rimantadine</scene> ([[Flumadine]])<ref name="Schnell">PMID:18235503 </ref> on inhibiting the transfer of protons through the M2 channel.<ref name="Stouffer" /> Amantadine is a proton surrogate that competes with protons for binding to His37, the residue involved in the gating mechanism.<ref name="Lear" /><ref>PMID:3662473</ref><ref>PMID:17156962</ref> It has been found that M2 is resistant to these two drugs in 90% of humans, birds and pigs. Understanding the structure and function of this proton channel is necessary in solving the resistance problem.<ref name="Stouffer" /> | The M2 proton channel is a key protein that leads to viral infection.<ref name="Takeuchi" /> The M2 proton channel acidifies the virion which allows the viral matrix protein (M1) to disassociate from the ribonucleoprotein (RNP).<ref name="Wu">PMID:12972147 </ref> This allows the RNP to be transported to the nucleus of the cell. Several recent studies have looked at the effects of <scene name='User:Sarah_Henke/Sandbox_1/Amantadine/1'>amantadine</scene> ([[Symmetrel]])<ref name="Stouffer">PMID:18235504 </ref> and <scene name='User:Sarah_Henke/Sandbox_1/Rimantadine/1'>rimantadine</scene> ([[Flumadine]])<ref name="Schnell">PMID:18235503 </ref> on inhibiting the transfer of protons through the M2 channel.<ref name="Stouffer" /> Amantadine is a proton surrogate that competes with protons for binding to His37, the residue involved in the gating mechanism.<ref name="Lear" /><ref>PMID:3662473</ref><ref>PMID:17156962</ref> It has been found that M2 is resistant to these two drugs in 90% of humans, birds and pigs. Understanding the structure and function of this proton channel is necessary in solving the resistance problem.<ref name="Stouffer" /> | ||
== Animation of Opening and Closing == | == Animation of Opening and Closing == | ||
Line 30: | Line 28: | ||
*[[Membrane Channels & Pumps]] | *[[Membrane Channels & Pumps]] | ||
<br /> | <br /> | ||
*[[Rimantadine]]<br /> | |||
*[[Amantadine]]<br /> | |||
*[[Treatments:M2 Proton Channel Inhibitor Pharmacokinetics]]<br /> | |||
*[[Treatments:Influenza]]. | |||
</StructureSection> | |||
== References == | == References == | ||
<references /> | <references /> |