5a25: Difference between revisions
No edit summary |
No edit summary |
||
Line 4: | Line 4: | ||
== Structural highlights == | == Structural highlights == | ||
<table><tr><td colspan='2'>[[5a25]] is a 2 chain structure with sequence from [https://en.wikipedia.org/wiki/Bos_taurus Bos taurus]. Full crystallographic information is available from [http://oca.weizmann.ac.il/oca-bin/ocashort?id=5A25 OCA]. For a <b>guided tour on the structure components</b> use [https://proteopedia.org/fgij/fg.htm?mol=5A25 FirstGlance]. <br> | <table><tr><td colspan='2'>[[5a25]] is a 2 chain structure with sequence from [https://en.wikipedia.org/wiki/Bos_taurus Bos taurus]. Full crystallographic information is available from [http://oca.weizmann.ac.il/oca-bin/ocashort?id=5A25 OCA]. For a <b>guided tour on the structure components</b> use [https://proteopedia.org/fgij/fg.htm?mol=5A25 FirstGlance]. <br> | ||
</td></tr><tr id='ligand'><td class="sblockLbl"><b>[[Ligand|Ligands:]]</b></td><td class="sblockDat" id="ligandDat"><scene name='pdbligand=BOG:B-OCTYLGLUCOSIDE'>BOG</scene>, <scene name='pdbligand=GOL:GLYCEROL'>GOL</scene>, <scene name='pdbligand=NA:SODIUM+ION'>NA</scene>, <scene name='pdbligand=ZN:ZINC+ION'>ZN</scene></td></tr> | </td></tr><tr id='method'><td class="sblockLbl"><b>[[Empirical_models|Method:]]</b></td><td class="sblockDat" id="methodDat">X-ray diffraction, [[Resolution|Resolution]] 1.9Å</td></tr> | ||
<tr id='ligand'><td class="sblockLbl"><b>[[Ligand|Ligands:]]</b></td><td class="sblockDat" id="ligandDat"><scene name='pdbligand=BOG:B-OCTYLGLUCOSIDE'>BOG</scene>, <scene name='pdbligand=GOL:GLYCEROL'>GOL</scene>, <scene name='pdbligand=NA:SODIUM+ION'>NA</scene>, <scene name='pdbligand=ZN:ZINC+ION'>ZN</scene></td></tr> | |||
<tr id='resources'><td class="sblockLbl"><b>Resources:</b></td><td class="sblockDat"><span class='plainlinks'>[https://proteopedia.org/fgij/fg.htm?mol=5a25 FirstGlance], [http://oca.weizmann.ac.il/oca-bin/ocaids?id=5a25 OCA], [https://pdbe.org/5a25 PDBe], [https://www.rcsb.org/pdb/explore.do?structureId=5a25 RCSB], [https://www.ebi.ac.uk/pdbsum/5a25 PDBsum], [https://prosat.h-its.org/prosat/prosatexe?pdbcode=5a25 ProSAT]</span></td></tr> | <tr id='resources'><td class="sblockLbl"><b>Resources:</b></td><td class="sblockDat"><span class='plainlinks'>[https://proteopedia.org/fgij/fg.htm?mol=5a25 FirstGlance], [http://oca.weizmann.ac.il/oca-bin/ocaids?id=5a25 OCA], [https://pdbe.org/5a25 PDBe], [https://www.rcsb.org/pdb/explore.do?structureId=5a25 RCSB], [https://www.ebi.ac.uk/pdbsum/5a25 PDBsum], [https://prosat.h-its.org/prosat/prosatexe?pdbcode=5a25 ProSAT]</span></td></tr> | ||
</table> | </table> |
Latest revision as of 14:02, 10 January 2024
Rational engineering of a mesophilic carbonic anhydrase to an extreme halotolerant biocatalystRational engineering of a mesophilic carbonic anhydrase to an extreme halotolerant biocatalyst
Structural highlights
FunctionCAH2_BOVIN Essential for bone resorption and osteoclast differentiation (By similarity). Reversible hydration of carbon dioxide. Publication Abstract from PubMedEnzymes expressed by highly salt-tolerant organisms show many modifications compared with salt-affected counterparts including biased amino acid and lower alpha-helix content, lower solvent accessibility and negative surface charge. Here, we show that halotolerance can be generated in an enzyme solely by modifying surface residues. Rational design of carbonic anhydrase II is undertaken in three stages replacing 18 residues in total, crystal structures confirm changes are confined to surface residues. Catalytic activities and thermal unfolding temperatures of the designed enzymes increase at high salt concentrations demonstrating their shift to halotolerance, whereas the opposite response is found in the wild-type enzyme. Molecular dynamics calculations reveal a key role for sodium ions in increasing halotolerant enzyme stability largely through interactions with the highly ordered first Na(+) hydration shell. For the first time, an approach to generate extreme halotolerance, a trait with broad application in industrial biocatalysis, in a wild-type enzyme is demonstrated. Rational engineering of a mesohalophilic carbonic anhydrase to an extreme halotolerant biocatalyst.,Warden AC, Williams M, Peat TS, Seabrook SA, Newman J, Dojchinov G, Haritos VS Nat Commun. 2015 Dec 21;6:10278. doi: 10.1038/ncomms10278. PMID:26687908[1] From MEDLINE®/PubMed®, a database of the U.S. National Library of Medicine. See AlsoReferences
|
|