4uva: Difference between revisions
No edit summary |
No edit summary |
||
(One intermediate revision by the same user not shown) | |||
Line 3: | Line 3: | ||
<StructureSection load='4uva' size='340' side='right'caption='[[4uva]], [[Resolution|resolution]] 2.90Å' scene=''> | <StructureSection load='4uva' size='340' side='right'caption='[[4uva]], [[Resolution|resolution]] 2.90Å' scene=''> | ||
== Structural highlights == | == Structural highlights == | ||
<table><tr><td colspan='2'>[[4uva]] is a 2 chain structure with sequence from [ | <table><tr><td colspan='2'>[[4uva]] is a 2 chain structure with sequence from [https://en.wikipedia.org/wiki/Homo_sapiens Homo sapiens]. Full crystallographic information is available from [http://oca.weizmann.ac.il/oca-bin/ocashort?id=4UVA OCA]. For a <b>guided tour on the structure components</b> use [https://proteopedia.org/fgij/fg.htm?mol=4UVA FirstGlance]. <br> | ||
</td></tr><tr id='ligand'><td class="sblockLbl"><b>[[Ligand|Ligands:]]</b></td><td class="sblockDat"><scene name='pdbligand=D73:[(2R,3S,4R,5R)-5-(6-amino-9H-purin-9-yl)-3,4-dihydroxytetrahydrofuran-2-yl]methyl+(2R,3S,4S)-2,3,4-trihydroxy-5-[(4aS)-4a-[(1S,3E)-3-imino-1-phenylbutyl]-7,8-dimethyl-2,4-dioxo-3,4,4a,5-tetrahydrobenzo[g]pteridin-10(2H)-yl]pentyl+dihydrogen+diphosphate'>D73</scene> | </td></tr><tr id='method'><td class="sblockLbl"><b>[[Empirical_models|Method:]]</b></td><td class="sblockDat" id="methodDat">X-ray diffraction, [[Resolution|Resolution]] 2.9Å</td></tr> | ||
<tr id='ligand'><td class="sblockLbl"><b>[[Ligand|Ligands:]]</b></td><td class="sblockDat" id="ligandDat"><scene name='pdbligand=D73:[(2R,3S,4R,5R)-5-(6-amino-9H-purin-9-yl)-3,4-dihydroxytetrahydrofuran-2-yl]methyl+(2R,3S,4S)-2,3,4-trihydroxy-5-[(4aS)-4a-[(1S,3E)-3-imino-1-phenylbutyl]-7,8-dimethyl-2,4-dioxo-3,4,4a,5-tetrahydrobenzo[g]pteridin-10(2H)-yl]pentyl+dihydrogen+diphosphate'>D73</scene></td></tr> | |||
<tr id='resources'><td class="sblockLbl"><b>Resources:</b></td><td class="sblockDat"><span class='plainlinks'>[ | <tr id='resources'><td class="sblockLbl"><b>Resources:</b></td><td class="sblockDat"><span class='plainlinks'>[https://proteopedia.org/fgij/fg.htm?mol=4uva FirstGlance], [http://oca.weizmann.ac.il/oca-bin/ocaids?id=4uva OCA], [https://pdbe.org/4uva PDBe], [https://www.rcsb.org/pdb/explore.do?structureId=4uva RCSB], [https://www.ebi.ac.uk/pdbsum/4uva PDBsum], [https://prosat.h-its.org/prosat/prosatexe?pdbcode=4uva ProSAT]</span></td></tr> | ||
</table> | </table> | ||
== Function == | == Function == | ||
[ | [https://www.uniprot.org/uniprot/KDM1A_HUMAN KDM1A_HUMAN] Histone demethylase that demethylates both 'Lys-4' (H3K4me) and 'Lys-9' (H3K9me) of histone H3, thereby acting as a coactivator or a corepressor, depending on the context. Acts by oxidizing the substrate by FAD to generate the corresponding imine that is subsequently hydrolyzed. Acts as a corepressor by mediating demethylation of H3K4me, a specific tag for epigenetic transcriptional activation. Demethylates both mono- (H3K4me1) and di-methylated (H3K4me2) H3K4me. May play a role in the repression of neuronal genes. Alone, it is unable to demethylate H3K4me on nucleosomes and requires the presence of RCOR1/CoREST to achieve such activity. Also acts as a coactivator of androgen receptor (ANDR)-dependent transcription, by being recruited to ANDR target genes and mediating demethylation of H3K9me, a specific tag for epigenetic transcriptional repression. The presence of PRKCB in ANDR-containing complexes, which mediates phosphorylation of 'Thr-6' of histone H3 (H3T6ph), a specific tag that prevents demethylation H3K4me, prevents H3K4me demethylase activity of KDM1A. Demethylates di-methylated 'Lys-370' of p53/TP53 which prevents interaction of p53/TP53 with TP53BP1 and represses p53/TP53-mediated transcriptional activation. Demethylates and stabilizes the DNA methylase DNMT1. Required for gastrulation during embryogenesis. Component of a RCOR/GFI/KDM1A/HDAC complex that suppresses, via histone deacetylase (HDAC) recruitment, a number of genes implicated in multilineage blood cell development.<ref>PMID:12032298</ref> <ref>PMID:15620353</ref> <ref>PMID:16079795</ref> <ref>PMID:17805299</ref> <ref>PMID:20228790</ref> | ||
<div style="background-color:#fffaf0;"> | <div style="background-color:#fffaf0;"> | ||
== Publication Abstract from PubMed == | == Publication Abstract from PubMed == | ||
Line 21: | Line 21: | ||
==See Also== | ==See Also== | ||
*[[Lysine-specific histone demethylase|Lysine-specific histone demethylase]] | *[[Lysine-specific histone demethylase 3D structures|Lysine-specific histone demethylase 3D structures]] | ||
== References == | == References == | ||
<references/> | <references/> | ||
__TOC__ | __TOC__ | ||
</StructureSection> | </StructureSection> | ||
[[Category: | [[Category: Homo sapiens]] | ||
[[Category: Large Structures]] | [[Category: Large Structures]] | ||
[[Category: Botrugno | [[Category: Botrugno O]] | ||
[[Category: Cappa | [[Category: Cappa A]] | ||
[[Category: Ciossani | [[Category: Ciossani G]] | ||
[[Category: Dessanti | [[Category: Dessanti P]] | ||
[[Category: Mai | [[Category: Mai A]] | ||
[[Category: Mattevi | [[Category: Mattevi A]] | ||
[[Category: Mercurio | [[Category: Mercurio C]] | ||
[[Category: Meroni | [[Category: Meroni G]] | ||
[[Category: Minucci | [[Category: Minucci S]] | ||
[[Category: Thaler | [[Category: Thaler F]] | ||
[[Category: Tortorici | [[Category: Tortorici M]] | ||
[[Category: Trifiro | [[Category: Trifiro P]] | ||
[[Category: Valente | [[Category: Valente S]] | ||
[[Category: Varasi | [[Category: Varasi M]] | ||
[[Category: Vianello | [[Category: Vianello P]] | ||
[[Category: Villa | [[Category: Villa M]] | ||
Latest revision as of 13:37, 10 January 2024
LSD1(KDM1A)-CoREST in complex with 1-Methyl-Tranylcypromine (1R,2S)LSD1(KDM1A)-CoREST in complex with 1-Methyl-Tranylcypromine (1R,2S)
Structural highlights
FunctionKDM1A_HUMAN Histone demethylase that demethylates both 'Lys-4' (H3K4me) and 'Lys-9' (H3K9me) of histone H3, thereby acting as a coactivator or a corepressor, depending on the context. Acts by oxidizing the substrate by FAD to generate the corresponding imine that is subsequently hydrolyzed. Acts as a corepressor by mediating demethylation of H3K4me, a specific tag for epigenetic transcriptional activation. Demethylates both mono- (H3K4me1) and di-methylated (H3K4me2) H3K4me. May play a role in the repression of neuronal genes. Alone, it is unable to demethylate H3K4me on nucleosomes and requires the presence of RCOR1/CoREST to achieve such activity. Also acts as a coactivator of androgen receptor (ANDR)-dependent transcription, by being recruited to ANDR target genes and mediating demethylation of H3K9me, a specific tag for epigenetic transcriptional repression. The presence of PRKCB in ANDR-containing complexes, which mediates phosphorylation of 'Thr-6' of histone H3 (H3T6ph), a specific tag that prevents demethylation H3K4me, prevents H3K4me demethylase activity of KDM1A. Demethylates di-methylated 'Lys-370' of p53/TP53 which prevents interaction of p53/TP53 with TP53BP1 and represses p53/TP53-mediated transcriptional activation. Demethylates and stabilizes the DNA methylase DNMT1. Required for gastrulation during embryogenesis. Component of a RCOR/GFI/KDM1A/HDAC complex that suppresses, via histone deacetylase (HDAC) recruitment, a number of genes implicated in multilineage blood cell development.[1] [2] [3] [4] [5] Publication Abstract from PubMedHistone demethylase KDM1A (also known as LSD1) has become an attractive therapeutic target for the treatment of cancer as well as other disorders such as viral infections. We report on the synthesis of compounds derived from the expansion of tranylcypromine as a chemical scaffold for the design of novel demethylase inhibitors. These compounds, which are substituted on the cyclopropyl core moiety, were evaluated for their ability to inhibit KDM1A in vitro as well as to function in cells by modulating the expression of Gfi-1b, a well recognized KDM1A target gene. The molecules were all found to covalently inhibit KDM1A and to become increasingly selective against human monoamine oxidases MAO A and MAO B through the introduction of bulkier substituents on the cyclopropylamine ring. Structural and biochemical analysis of selected trans isomers showed that the two stereoisomers are endowed with similar inhibitory activities against KDM1A, but form different covalent adducts with the FAD co-enzyme. Synthesis, biological activity and mechanistic insights of 1-substituted cyclopropylamine derivatives: A novel class of irreversible inhibitors of histone demethylase KDM1A.,Vianello P, Botrugno OA, Cappa A, Ciossani G, Dessanti P, Mai A, Mattevi A, Meroni G, Minucci S, Thaler F, Tortorici M, Trifiro P, Valente S, Villa M, Varasi M, Mercurio C Eur J Med Chem. 2014 Aug 27;86C:352-363. doi: 10.1016/j.ejmech.2014.08.068. PMID:25173853[6] From MEDLINE®/PubMed®, a database of the U.S. National Library of Medicine. See AlsoReferences
|
|