1xov: Difference between revisions
No edit summary |
No edit summary |
||
(9 intermediate revisions by the same user not shown) | |||
Line 1: | Line 1: | ||
< | ==The crystal structure of the listeria monocytogenes bacteriophage PSA endolysin PlyPSA== | ||
<StructureSection load='1xov' size='340' side='right'caption='[[1xov]], [[Resolution|resolution]] 1.80Å' scene=''> | |||
== Structural highlights == | |||
<table><tr><td colspan='2'>[[1xov]] is a 1 chain structure with sequence from [https://en.wikipedia.org/wiki/Listeria_phage_PSA Listeria phage PSA]. Full crystallographic information is available from [http://oca.weizmann.ac.il/oca-bin/ocashort?id=1XOV OCA]. For a <b>guided tour on the structure components</b> use [https://proteopedia.org/fgij/fg.htm?mol=1XOV FirstGlance]. <br> | |||
</td></tr><tr id='method'><td class="sblockLbl"><b>[[Empirical_models|Method:]]</b></td><td class="sblockDat" id="methodDat">X-ray diffraction, [[Resolution|Resolution]] 1.8Å</td></tr> | |||
--> | <tr id='ligand'><td class="sblockLbl"><b>[[Ligand|Ligands:]]</b></td><td class="sblockDat" id="ligandDat"><scene name='pdbligand=CL:CHLORIDE+ION'>CL</scene>, <scene name='pdbligand=GLU:GLUTAMIC+ACID'>GLU</scene>, <scene name='pdbligand=LYS:LYSINE'>LYS</scene>, <scene name='pdbligand=SO4:SULFATE+ION'>SO4</scene>, <scene name='pdbligand=TRS:2-AMINO-2-HYDROXYMETHYL-PROPANE-1,3-DIOL'>TRS</scene>, <scene name='pdbligand=ZN:ZINC+ION'>ZN</scene></td></tr> | ||
<tr id='resources'><td class="sblockLbl"><b>Resources:</b></td><td class="sblockDat"><span class='plainlinks'>[https://proteopedia.org/fgij/fg.htm?mol=1xov FirstGlance], [http://oca.weizmann.ac.il/oca-bin/ocaids?id=1xov OCA], [https://pdbe.org/1xov PDBe], [https://www.rcsb.org/pdb/explore.do?structureId=1xov RCSB], [https://www.ebi.ac.uk/pdbsum/1xov PDBsum], [https://prosat.h-its.org/prosat/prosatexe?pdbcode=1xov ProSAT]</span></td></tr> | |||
</table> | |||
== Function == | |||
[https://www.uniprot.org/uniprot/Q8W5Y8_9CAUD Q8W5Y8_9CAUD] | |||
== Evolutionary Conservation == | |||
== | [[Image:Consurf_key_small.gif|200px|right]] | ||
Check<jmol> | |||
<jmolCheckbox> | |||
<scriptWhenChecked>; select protein; define ~consurf_to_do selected; consurf_initial_scene = true; script "/wiki/ConSurf/xo/1xov_consurf.spt"</scriptWhenChecked> | |||
<scriptWhenUnchecked>script /wiki/extensions/Proteopedia/spt/initialview01.spt</scriptWhenUnchecked> | |||
<text>to colour the structure by Evolutionary Conservation</text> | |||
</jmolCheckbox> | |||
</jmol>, as determined by [http://consurfdb.tau.ac.il/ ConSurfDB]. You may read the [[Conservation%2C_Evolutionary|explanation]] of the method and the full data available from [http://bental.tau.ac.il/new_ConSurfDB/main_output.php?pdb_ID=1xov ConSurf]. | |||
<div style="clear:both"></div> | |||
<div style="background-color:#fffaf0;"> | |||
== Publication Abstract from PubMed == | |||
Bacteriophage murein hydrolases exhibit high specificity towards the cell walls of their host bacteria. This specificity is mostly provided by a structurally well defined cell wall-binding domain that attaches the enzyme to its solid substrate. To gain deeper insight into this mechanism we have crystallized the complete 314 amino acid endolysin from the temperate Listeria monocytogenes phage PSA. The crystal structure of PlyPSA was determined by single wavelength anomalous dispersion methods and refined to 1.8 A resolution. The two functional domains of the polypeptide, providing cell wall-binding and enzymatic activities, can be clearly distinguished and are connected via a linker segment of six amino acid residues. The core of the N-acetylmuramoyl-L-alanine amidase moiety is formed by a twisted, six-stranded beta-sheet flanked by six helices. Although the catalytic domain is unique among the known Listeria phage endolysins, its structure is highly similar to known phosphorylase/hydrolase-like alpha/beta-proteins, including an autolysin amidase from Paenibacillus polymyxa. In contrast, the C-terminal domain of PlyPSA features a novel fold, comprising two copies of a beta-barrel-like motif, which are held together by means of swapped beta-strands. The architecture of the enzyme with its two separate domains explains its unique substrate recognition properties and also provides insight into the lytic mechanisms of related Listeria phage endolysins, a class of enzymes that bear biotechnological potential. | Bacteriophage murein hydrolases exhibit high specificity towards the cell walls of their host bacteria. This specificity is mostly provided by a structurally well defined cell wall-binding domain that attaches the enzyme to its solid substrate. To gain deeper insight into this mechanism we have crystallized the complete 314 amino acid endolysin from the temperate Listeria monocytogenes phage PSA. The crystal structure of PlyPSA was determined by single wavelength anomalous dispersion methods and refined to 1.8 A resolution. The two functional domains of the polypeptide, providing cell wall-binding and enzymatic activities, can be clearly distinguished and are connected via a linker segment of six amino acid residues. The core of the N-acetylmuramoyl-L-alanine amidase moiety is formed by a twisted, six-stranded beta-sheet flanked by six helices. Although the catalytic domain is unique among the known Listeria phage endolysins, its structure is highly similar to known phosphorylase/hydrolase-like alpha/beta-proteins, including an autolysin amidase from Paenibacillus polymyxa. In contrast, the C-terminal domain of PlyPSA features a novel fold, comprising two copies of a beta-barrel-like motif, which are held together by means of swapped beta-strands. The architecture of the enzyme with its two separate domains explains its unique substrate recognition properties and also provides insight into the lytic mechanisms of related Listeria phage endolysins, a class of enzymes that bear biotechnological potential. | ||
The crystal structure of the bacteriophage PSA endolysin reveals a unique fold responsible for specific recognition of Listeria cell walls.,Korndorfer IP, Danzer J, Schmelcher M, Zimmer M, Skerra A, Loessner MJ J Mol Biol. 2006 Dec 8;364(4):678-89. Epub 2006 Aug 30. PMID:17010991<ref>PMID:17010991</ref> | |||
From MEDLINE®/PubMed®, a database of the U.S. National Library of Medicine.<br> | |||
</div> | |||
[[Category: | <div class="pdbe-citations 1xov" style="background-color:#fffaf0;"></div> | ||
[[Category: | == References == | ||
<references/> | |||
[[Category: Korndoerfer | __TOC__ | ||
[[Category: Skerra | </StructureSection> | ||
[[Category: Large Structures]] | |||
[[Category: Listeria phage PSA]] | |||
[[Category: Korndoerfer IP]] | |||
[[Category: Skerra A]] |
Latest revision as of 14:04, 3 January 2024
The crystal structure of the listeria monocytogenes bacteriophage PSA endolysin PlyPSAThe crystal structure of the listeria monocytogenes bacteriophage PSA endolysin PlyPSA
Structural highlights
FunctionEvolutionary Conservation![]() Check, as determined by ConSurfDB. You may read the explanation of the method and the full data available from ConSurf. Publication Abstract from PubMedBacteriophage murein hydrolases exhibit high specificity towards the cell walls of their host bacteria. This specificity is mostly provided by a structurally well defined cell wall-binding domain that attaches the enzyme to its solid substrate. To gain deeper insight into this mechanism we have crystallized the complete 314 amino acid endolysin from the temperate Listeria monocytogenes phage PSA. The crystal structure of PlyPSA was determined by single wavelength anomalous dispersion methods and refined to 1.8 A resolution. The two functional domains of the polypeptide, providing cell wall-binding and enzymatic activities, can be clearly distinguished and are connected via a linker segment of six amino acid residues. The core of the N-acetylmuramoyl-L-alanine amidase moiety is formed by a twisted, six-stranded beta-sheet flanked by six helices. Although the catalytic domain is unique among the known Listeria phage endolysins, its structure is highly similar to known phosphorylase/hydrolase-like alpha/beta-proteins, including an autolysin amidase from Paenibacillus polymyxa. In contrast, the C-terminal domain of PlyPSA features a novel fold, comprising two copies of a beta-barrel-like motif, which are held together by means of swapped beta-strands. The architecture of the enzyme with its two separate domains explains its unique substrate recognition properties and also provides insight into the lytic mechanisms of related Listeria phage endolysins, a class of enzymes that bear biotechnological potential. The crystal structure of the bacteriophage PSA endolysin reveals a unique fold responsible for specific recognition of Listeria cell walls.,Korndorfer IP, Danzer J, Schmelcher M, Zimmer M, Skerra A, Loessner MJ J Mol Biol. 2006 Dec 8;364(4):678-89. Epub 2006 Aug 30. PMID:17010991[1] From MEDLINE®/PubMed®, a database of the U.S. National Library of Medicine. References
|
|