4w4y: Difference between revisions

From Proteopedia
Jump to navigation Jump to search
No edit summary
No edit summary
 
(One intermediate revision by the same user not shown)
Line 3: Line 3:
<StructureSection load='4w4y' size='340' side='right'caption='[[4w4y]], [[Resolution|resolution]] 2.30&Aring;' scene=''>
<StructureSection load='4w4y' size='340' side='right'caption='[[4w4y]], [[Resolution|resolution]] 2.30&Aring;' scene=''>
== Structural highlights ==
== Structural highlights ==
<table><tr><td colspan='2'>[[4w4y]] is a 1 chain structure with sequence from [http://en.wikipedia.org/wiki/Human Human]. Full crystallographic information is available from [http://oca.weizmann.ac.il/oca-bin/ocashort?id=4W4Y OCA]. For a <b>guided tour on the structure components</b> use [http://oca.weizmann.ac.il/oca-docs/fgij/fg.htm?mol=4W4Y FirstGlance]. <br>
<table><tr><td colspan='2'>[[4w4y]] is a 1 chain structure with sequence from [https://en.wikipedia.org/wiki/Homo_sapiens Homo sapiens]. Full crystallographic information is available from [http://oca.weizmann.ac.il/oca-bin/ocashort?id=4W4Y OCA]. For a <b>guided tour on the structure components</b> use [https://proteopedia.org/fgij/fg.htm?mol=4W4Y FirstGlance]. <br>
</td></tr><tr id='ligand'><td class="sblockLbl"><b>[[Ligand|Ligands:]]</b></td><td class="sblockDat"><scene name='pdbligand=3HQ:3-(4-{[(4-METHYLPHENYL)CARBAMOYL]AMINO}-1H-PYRAZOL-1-YL)-N-(2-METHYLPYRIDIN-4-YL)BENZAMIDE'>3HQ</scene></td></tr>
</td></tr><tr id='method'><td class="sblockLbl"><b>[[Empirical_models|Method:]]</b></td><td class="sblockDat" id="methodDat">X-ray diffraction, [[Resolution|Resolution]] 2.3&#8491;</td></tr>
<tr id='related'><td class="sblockLbl"><b>[[Related_structure|Related:]]</b></td><td class="sblockDat">[[4w4v|4w4v]], [[4w4w|4w4w]], [[4w4x|4w4x]]</td></tr>
<tr id='ligand'><td class="sblockLbl"><b>[[Ligand|Ligands:]]</b></td><td class="sblockDat" id="ligandDat"><scene name='pdbligand=3HQ:3-(4-{[(4-METHYLPHENYL)CARBAMOYL]AMINO}-1H-PYRAZOL-1-YL)-N-(2-METHYLPYRIDIN-4-YL)BENZAMIDE'>3HQ</scene></td></tr>
<tr id='gene'><td class="sblockLbl"><b>[[Gene|Gene:]]</b></td><td class="sblockDat">MAPK10, JNK3, JNK3A, PRKM10, SAPK1B ([http://www.ncbi.nlm.nih.gov/Taxonomy/Browser/wwwtax.cgi?mode=Info&srchmode=5&id=9606 HUMAN])</td></tr>
<tr id='resources'><td class="sblockLbl"><b>Resources:</b></td><td class="sblockDat"><span class='plainlinks'>[https://proteopedia.org/fgij/fg.htm?mol=4w4y FirstGlance], [http://oca.weizmann.ac.il/oca-bin/ocaids?id=4w4y OCA], [https://pdbe.org/4w4y PDBe], [https://www.rcsb.org/pdb/explore.do?structureId=4w4y RCSB], [https://www.ebi.ac.uk/pdbsum/4w4y PDBsum], [https://prosat.h-its.org/prosat/prosatexe?pdbcode=4w4y ProSAT]</span></td></tr>
<tr id='activity'><td class="sblockLbl"><b>Activity:</b></td><td class="sblockDat"><span class='plainlinks'>[http://en.wikipedia.org/wiki/Mitogen-activated_protein_kinase Mitogen-activated protein kinase], with EC number [http://www.brenda-enzymes.info/php/result_flat.php4?ecno=2.7.11.24 2.7.11.24] </span></td></tr>
<tr id='resources'><td class="sblockLbl"><b>Resources:</b></td><td class="sblockDat"><span class='plainlinks'>[http://oca.weizmann.ac.il/oca-docs/fgij/fg.htm?mol=4w4y FirstGlance], [http://oca.weizmann.ac.il/oca-bin/ocaids?id=4w4y OCA], [http://pdbe.org/4w4y PDBe], [http://www.rcsb.org/pdb/explore.do?structureId=4w4y RCSB], [http://www.ebi.ac.uk/pdbsum/4w4y PDBsum], [http://prosat.h-its.org/prosat/prosatexe?pdbcode=4w4y ProSAT]</span></td></tr>
</table>
</table>
== Disease ==
== Disease ==
[[http://www.uniprot.org/uniprot/MK10_HUMAN MK10_HUMAN]] Defects in MAPK10 are a cause of epileptic encephalopathy Lennox-Gastaut type (EELG) [MIM:[http://omim.org/entry/606369 606369]]. Epileptic encephalopathies of the Lennox-Gastaut group are childhood epileptic disorders characterized by severe psychomotor delay and seizures. Note=A chromosomal aberration involving MAPK10 has been found in a single patient. Translocation t(Y;4)(q11.2;q21) which causes MAPK10 truncation.  
[https://www.uniprot.org/uniprot/MK10_HUMAN MK10_HUMAN] Defects in MAPK10 are a cause of epileptic encephalopathy Lennox-Gastaut type (EELG) [MIM:[https://omim.org/entry/606369 606369]. Epileptic encephalopathies of the Lennox-Gastaut group are childhood epileptic disorders characterized by severe psychomotor delay and seizures. Note=A chromosomal aberration involving MAPK10 has been found in a single patient. Translocation t(Y;4)(q11.2;q21) which causes MAPK10 truncation.
== Function ==
== Function ==
[[http://www.uniprot.org/uniprot/MK10_HUMAN MK10_HUMAN]] Serine/threonine-protein kinase involved in various processes such as neuronal proliferation, differentiation, migration and programmed cell death. Extracellular stimuli such as proinflammatory cytokines or physical stress stimulate the stress-activated protein kinase/c-Jun N-terminal kinase (SAP/JNK) signaling pathway. In this cascade, two dual specificity kinases MAP2K4/MKK4 and MAP2K7/MKK7 phosphorylate and activate MAPK10/JNK3. In turn, MAPK10/JNK3 phosphorylates a number of transcription factors, primarily components of AP-1 such as JUN and ATF2 and thus regulates AP-1 transcriptional activity. Plays regulatory roles in the signaling pathways during neuronal apoptosis. Phosphorylates the neuronal microtubule regulator STMN2. Acts in the regulation of the beta-amyloid precursor protein/APP signaling during neuronal differentiation by phosphorylating APP. Participates also in neurite growth in spiral ganglion neurons.<ref>PMID:11718727</ref>
[https://www.uniprot.org/uniprot/MK10_HUMAN MK10_HUMAN] Serine/threonine-protein kinase involved in various processes such as neuronal proliferation, differentiation, migration and programmed cell death. Extracellular stimuli such as proinflammatory cytokines or physical stress stimulate the stress-activated protein kinase/c-Jun N-terminal kinase (SAP/JNK) signaling pathway. In this cascade, two dual specificity kinases MAP2K4/MKK4 and MAP2K7/MKK7 phosphorylate and activate MAPK10/JNK3. In turn, MAPK10/JNK3 phosphorylates a number of transcription factors, primarily components of AP-1 such as JUN and ATF2 and thus regulates AP-1 transcriptional activity. Plays regulatory roles in the signaling pathways during neuronal apoptosis. Phosphorylates the neuronal microtubule regulator STMN2. Acts in the regulation of the beta-amyloid precursor protein/APP signaling during neuronal differentiation by phosphorylating APP. Participates also in neurite growth in spiral ganglion neurons.<ref>PMID:11718727</ref>  
<div style="background-color:#fffaf0;">
<div style="background-color:#fffaf0;">
== Publication Abstract from PubMed ==
== Publication Abstract from PubMed ==
Line 27: Line 25:
__TOC__
__TOC__
</StructureSection>
</StructureSection>
[[Category: Human]]
[[Category: Homo sapiens]]
[[Category: Large Structures]]
[[Category: Large Structures]]
[[Category: Mitogen-activated protein kinase]]
[[Category: Feng Y]]
[[Category: Feng, Y]]
[[Category: Hernandez P]]
[[Category: Hernandez, P]]
[[Category: Iqbal S]]
[[Category: Iqbal, S]]
[[Category: LoGrasso P]]
[[Category: LoGrasso, P]]
[[Category: Mora R]]
[[Category: Mora, R]]
[[Category: Park H]]
[[Category: Park, H]]
[[Category: Zheng K]]
[[Category: Zheng, K]]
[[Category: Isoform selective]]
[[Category: Jnk]]
[[Category: Map kinase]]
[[Category: Transferase-transferase inhibitor complex]]

Latest revision as of 03:51, 28 December 2023

JNK2/3 in complex with 3-(4-{[(4-methylphenyl)carbamoyl]amino}-1H-pyrazol-1-yl)-N-(2-methylpyridin-4-yl)benzamideJNK2/3 in complex with 3-(4-{[(4-methylphenyl)carbamoyl]amino}-1H-pyrazol-1-yl)-N-(2-methylpyridin-4-yl)benzamide

Structural highlights

4w4y is a 1 chain structure with sequence from Homo sapiens. Full crystallographic information is available from OCA. For a guided tour on the structure components use FirstGlance.
Method:X-ray diffraction, Resolution 2.3Å
Ligands:
Resources:FirstGlance, OCA, PDBe, RCSB, PDBsum, ProSAT

Disease

MK10_HUMAN Defects in MAPK10 are a cause of epileptic encephalopathy Lennox-Gastaut type (EELG) [MIM:606369. Epileptic encephalopathies of the Lennox-Gastaut group are childhood epileptic disorders characterized by severe psychomotor delay and seizures. Note=A chromosomal aberration involving MAPK10 has been found in a single patient. Translocation t(Y;4)(q11.2;q21) which causes MAPK10 truncation.

Function

MK10_HUMAN Serine/threonine-protein kinase involved in various processes such as neuronal proliferation, differentiation, migration and programmed cell death. Extracellular stimuli such as proinflammatory cytokines or physical stress stimulate the stress-activated protein kinase/c-Jun N-terminal kinase (SAP/JNK) signaling pathway. In this cascade, two dual specificity kinases MAP2K4/MKK4 and MAP2K7/MKK7 phosphorylate and activate MAPK10/JNK3. In turn, MAPK10/JNK3 phosphorylates a number of transcription factors, primarily components of AP-1 such as JUN and ATF2 and thus regulates AP-1 transcriptional activity. Plays regulatory roles in the signaling pathways during neuronal apoptosis. Phosphorylates the neuronal microtubule regulator STMN2. Acts in the regulation of the beta-amyloid precursor protein/APP signaling during neuronal differentiation by phosphorylating APP. Participates also in neurite growth in spiral ganglion neurons.[1]

Publication Abstract from PubMed

Three JNK isoforms, JNK1, JNK2, and JNK3 have been reported and unique biological function has been ascribed to each. It is unknown if selective inhibition of these isoforms would confer therapeutic or safety benefit. To probe JNK isoform function we designed JNK2/3 inhibitors that have >30-fold selectivity over JNK1. Utilizing site-directed mutagenesis and x-ray crystallography we identified L144 in JNK3 as a key residue for selectivity. To test whether JNK2/3 selective inhibitors protect human dopaminergic neurons against neurotoxin-induced mitochondrial dysfunction, we monitored reactive oxygen species (ROS) generation and mitochondrial membrane potential (MMP). The results showed that JNK2/3 selective inhibitors protected against 6-hydroxydopamine-induced ROS generation and MMP depolarization. These results suggest that it was possible to develop JNK2/3 selective inhibitors and that residues in hydrophobic pocket I were responsible for selectivity. Moreover, the findings also suggest that inhibition of JNK2/3 likely contributed to protecting mitochondrial function and prevented ultimate cell death.

Structural Basis and Biological Consequences for JNK2/3 Isoform Selective Aminopyrazoles.,Park H, Iqbal S, Hernandez P, Mora R, Zheng K, Feng Y, LoGrasso P Sci Rep. 2015 Jan 27;5:8047. doi: 10.1038/srep08047. PMID:25623238[2]

From MEDLINE®/PubMed®, a database of the U.S. National Library of Medicine.

References

  1. Neidhart S, Antonsson B, Gillieron C, Vilbois F, Grenningloh G, Arkinstall S. c-Jun N-terminal kinase-3 (JNK3)/stress-activated protein kinase-beta (SAPKbeta) binds and phosphorylates the neuronal microtubule regulator SCG10. FEBS Lett. 2001 Nov 16;508(2):259-64. PMID:11718727
  2. Park H, Iqbal S, Hernandez P, Mora R, Zheng K, Feng Y, LoGrasso P. Structural Basis and Biological Consequences for JNK2/3 Isoform Selective Aminopyrazoles. Sci Rep. 2015 Jan 27;5:8047. doi: 10.1038/srep08047. PMID:25623238 doi:http://dx.doi.org/10.1038/srep08047

4w4y, resolution 2.30Å

Drag the structure with the mouse to rotate

Proteopedia Page Contributors and Editors (what is this?)Proteopedia Page Contributors and Editors (what is this?)

OCA