2nzi: Difference between revisions

No edit summary
No edit summary
 
(16 intermediate revisions by the same user not shown)
Line 1: Line 1:
[[Image:2nzi.gif|left|200px]]<br /><applet load="2nzi" size="350" color="white" frame="true" align="right" spinBox="true"
caption="2nzi, resolution 2.9&Aring;" />
'''Crystal structure of domains A168-A170 from titin'''<br />


==Overview==
==Crystal structure of domains A168-A170 from titin==
<StructureSection load='2nzi' size='340' side='right'caption='[[2nzi]], [[Resolution|resolution]] 2.90&Aring;' scene=''>
== Structural highlights ==
<table><tr><td colspan='2'>[[2nzi]] is a 2 chain structure with sequence from [https://en.wikipedia.org/wiki/Homo_sapiens Homo sapiens]. Full crystallographic information is available from [http://oca.weizmann.ac.il/oca-bin/ocashort?id=2NZI OCA]. For a <b>guided tour on the structure components</b> use [https://proteopedia.org/fgij/fg.htm?mol=2NZI FirstGlance]. <br>
</td></tr><tr id='method'><td class="sblockLbl"><b>[[Empirical_models|Method:]]</b></td><td class="sblockDat" id="methodDat">X-ray diffraction, [[Resolution|Resolution]] 2.9&#8491;</td></tr>
<tr id='resources'><td class="sblockLbl"><b>Resources:</b></td><td class="sblockDat"><span class='plainlinks'>[https://proteopedia.org/fgij/fg.htm?mol=2nzi FirstGlance], [http://oca.weizmann.ac.il/oca-bin/ocaids?id=2nzi OCA], [https://pdbe.org/2nzi PDBe], [https://www.rcsb.org/pdb/explore.do?structureId=2nzi RCSB], [https://www.ebi.ac.uk/pdbsum/2nzi PDBsum], [https://prosat.h-its.org/prosat/prosatexe?pdbcode=2nzi ProSAT]</span></td></tr>
</table>
== Disease ==
[https://www.uniprot.org/uniprot/TITIN_HUMAN TITIN_HUMAN] Defects in TTN are the cause of hereditary myopathy with early respiratory failure (HMERF) [MIM:[https://omim.org/entry/603689 603689]; also known as Edstrom myopathy. HMERF is an autosomal dominant, adult-onset myopathy with early respiratory muscle involvement.<ref>PMID:15802564</ref>  Defects in TTN are the cause of familial hypertrophic cardiomyopathy type 9 (CMH9) [MIM:[https://omim.org/entry/613765 613765]. Familial hypertrophic cardiomyopathy is a hereditary heart disorder characterized by ventricular hypertrophy, which is usually asymmetric and often involves the interventricular septum. The symptoms include dyspnea, syncope, collapse, palpitations, and chest pain. They can be readily provoked by exercise. The disorder has inter- and intrafamilial variability ranging from benign to malignant forms with high risk of cardiac failure and sudden cardiac death.<ref>PMID:10462489</ref>  Defects in TTN are the cause of cardiomyopathy dilated type 1G (CMD1G) [MIM:[https://omim.org/entry/604145 604145]. Dilated cardiomyopathy is a disorder characterized by ventricular dilation and impaired systolic function, resulting in congestive heart failure and arrhythmia. Patients are at risk of premature death.<ref>PMID:11846417</ref> <ref>PMID:11788824</ref> <ref>PMID:16465475</ref>  Defects in TTN are the cause of tardive tibial muscular dystrophy (TMD) [MIM:[https://omim.org/entry/600334 600334]; also known as Udd myopathy. TMD is an autosomal dominant, late-onset distal myopathy. Muscle weakness and atrophy are usually confined to the anterior compartment of the lower leg, in particular the tibialis anterior muscle. Clinical symptoms usually occur at age 35-45 years or much later.<ref>PMID:12145747</ref> <ref>PMID:12891679</ref>  Defects in TTN are the cause of limb-girdle muscular dystrophy type 2J (LGMD2J) [MIM:[https://omim.org/entry/608807 608807]. LGMD2J is an autosomal recessive degenerative myopathy characterized by progressive weakness of the pelvic and shoulder girdle muscles. Severe disability is observed within 20 years of onset.  Defects in TTN are the cause of early-onset myopathy with fatal cardiomyopathy (EOMFC) [MIM:[https://omim.org/entry/611705 611705]. Early-onset myopathies are inherited muscle disorders that manifest typically from birth or infancy with hypotonia, muscle weakness, and delayed motor development. EOMFC is a titinopathy that, in contrast with the previously described examples, involves both heart and skeletal muscle, has a congenital onset, and is purely recessive. This phenotype is due to homozygous out-of-frame TTN deletions, which lead to a total absence of titin's C-terminal end from striated muscles and to secondary CAPN3 depletion.<ref>PMID:17444505</ref>
== Function ==
[https://www.uniprot.org/uniprot/TITIN_HUMAN TITIN_HUMAN] Key component in the assembly and functioning of vertebrate striated muscles. By providing connections at the level of individual microfilaments, it contributes to the fine balance of forces between the two halves of the sarcomere. The size and extensibility of the cross-links are the main determinants of sarcomere extensibility properties of muscle. In non-muscle cells, seems to play a role in chromosome condensation and chromosome segregation during mitosis. Might link the lamina network to chromatin or nuclear actin, or both during interphase.<ref>PMID:9804419</ref>
== Evolutionary Conservation ==
[[Image:Consurf_key_small.gif|200px|right]]
Check<jmol>
  <jmolCheckbox>
    <scriptWhenChecked>; select protein; define ~consurf_to_do selected; consurf_initial_scene = true; script "/wiki/ConSurf/nz/2nzi_consurf.spt"</scriptWhenChecked>
    <scriptWhenUnchecked>script /wiki/extensions/Proteopedia/spt/initialview01.spt</scriptWhenUnchecked>
    <text>to colour the structure by Evolutionary Conservation</text>
  </jmolCheckbox>
</jmol>, as determined by [http://consurfdb.tau.ac.il/ ConSurfDB]. You may read the [[Conservation%2C_Evolutionary|explanation]] of the method and the full data available from [http://bental.tau.ac.il/new_ConSurfDB/main_output.php?pdb_ID=2nzi ConSurf].
<div style="clear:both"></div>
<div style="background-color:#fffaf0;">
== Publication Abstract from PubMed ==
Titin forms an intrasarcomeric filament system in vertebrate striated muscle, which has elastic and signaling properties and is thereby central to mechanotransduction. Near its C-terminus and directly preceding a kinase domain, titin contains a conserved pattern of Ig and FnIII modules (Ig(A168)-Ig(A169)-FnIII(A170), hereby A168-A170) that recruits the E3 ubiquitin-ligase MuRF-1 to the filament. This interaction is thought to regulate myofibril turnover and the trophic state of muscle. We have elucidated the crystal structure of A168-A170, characterized MuRF-1 variants by circular dichroism (CD) and SEC-MALS, and studied the interaction of both components by isothermal calorimetry, SPOTS blots, and pull-down assays. This has led to the identification of the molecular determinants of the binding. A168-A170 shows an extended, rigid architecture, which is characterized by a shallow surface groove that spans its full length and a distinct loop protrusion in its middle point. In MuRF-1, a C-terminal helical domain is sufficient to bind A168-A170 with high affinity. This helical region predictably docks into the surface groove of A168-A170. Furthermore, pull-down assays demonstrate that the loop protrusion in A168-A170 is a key mediator of MuRF-1 recognition. Our findings indicate that this region of titin could serve as a target to attempt therapeutic inhibition of MuRF-1-mediated muscle turnover, where binding of small molecules to its distinctive structural features could block MuRF-1 access.
Titin forms an intrasarcomeric filament system in vertebrate striated muscle, which has elastic and signaling properties and is thereby central to mechanotransduction. Near its C-terminus and directly preceding a kinase domain, titin contains a conserved pattern of Ig and FnIII modules (Ig(A168)-Ig(A169)-FnIII(A170), hereby A168-A170) that recruits the E3 ubiquitin-ligase MuRF-1 to the filament. This interaction is thought to regulate myofibril turnover and the trophic state of muscle. We have elucidated the crystal structure of A168-A170, characterized MuRF-1 variants by circular dichroism (CD) and SEC-MALS, and studied the interaction of both components by isothermal calorimetry, SPOTS blots, and pull-down assays. This has led to the identification of the molecular determinants of the binding. A168-A170 shows an extended, rigid architecture, which is characterized by a shallow surface groove that spans its full length and a distinct loop protrusion in its middle point. In MuRF-1, a C-terminal helical domain is sufficient to bind A168-A170 with high affinity. This helical region predictably docks into the surface groove of A168-A170. Furthermore, pull-down assays demonstrate that the loop protrusion in A168-A170 is a key mediator of MuRF-1 recognition. Our findings indicate that this region of titin could serve as a target to attempt therapeutic inhibition of MuRF-1-mediated muscle turnover, where binding of small molecules to its distinctive structural features could block MuRF-1 access.


==Disease==
Molecular determinants for the recruitment of the ubiquitin-ligase MuRF-1 onto M-line titin.,Mrosek M, Labeit D, Witt S, Heerklotz H, von Castelmur E, Labeit S, Mayans O FASEB J. 2007 May;21(7):1383-92. Epub 2007 Jan 10. PMID:17215480<ref>PMID:17215480</ref>
Known diseases associated with this structure: Cardiomyopathy, dilated, 1G OMIM:[[http://www.ncbi.nlm.nih.gov/entrez/dispomim.cgi?id=188840 188840]], Cardiomyopathy, familial hypertrophic OMIM:[[http://www.ncbi.nlm.nih.gov/entrez/dispomim.cgi?id=188840 188840]], Muscular dystrophy, limb-girdle, type 2J OMIM:[[http://www.ncbi.nlm.nih.gov/entrez/dispomim.cgi?id=188840 188840]], Myopathy, early-onset, with fatal cardiomyopathy OMIM:[[http://www.ncbi.nlm.nih.gov/entrez/dispomim.cgi?id=188840 188840]], Myopathy, proximal, with early respiratory muscle involvement OMIM:[[http://www.ncbi.nlm.nih.gov/entrez/dispomim.cgi?id=188840 188840]], Tibial muscular dystrophy, tardive OMIM:[[http://www.ncbi.nlm.nih.gov/entrez/dispomim.cgi?id=188840 188840]]


==About this Structure==
From MEDLINE&reg;/PubMed&reg;, a database of the U.S. National Library of Medicine.<br>
2NZI is a [http://en.wikipedia.org/wiki/Single_protein Single protein] structure of sequence from [http://en.wikipedia.org/wiki/Homo_sapiens Homo sapiens]. Active as [http://en.wikipedia.org/wiki/Non-specific_serine/threonine_protein_kinase Non-specific serine/threonine protein kinase], with EC number [http://www.brenda-enzymes.info/php/result_flat.php4?ecno=2.7.11.1 2.7.11.1] Full crystallographic information is available from [http://oca.weizmann.ac.il/oca-bin/ocashort?id=2NZI OCA].
</div>
<div class="pdbe-citations 2nzi" style="background-color:#fffaf0;"></div>


==Reference==
==See Also==
Molecular determinants for the recruitment of the ubiquitin-ligase MuRF-1 onto M-line titin., Mrosek M, Labeit D, Witt S, Heerklotz H, von Castelmur E, Labeit S, Mayans O, FASEB J. 2007 May;21(7):1383-92. Epub 2007 Jan 10. PMID:[http://ispc.weizmann.ac.il//pmbin/getpm?pmid=17215480 17215480]
*[[Titin 3D structures|Titin 3D structures]]
== References ==
<references/>
__TOC__
</StructureSection>
[[Category: Homo sapiens]]
[[Category: Homo sapiens]]
[[Category: Non-specific serine/threonine protein kinase]]
[[Category: Large Structures]]
[[Category: Single protein]]
[[Category: Labeit D]]
[[Category: Labeit, D.]]
[[Category: Labeit S]]
[[Category: Labeit, S.]]
[[Category: Mayans O]]
[[Category: Mayans, O.]]
[[Category: Mrosek MC]]
[[Category: Mrosek, M C.]]
[[Category: fniii-domain]]
[[Category: ig-domain]]
 
''Page seeded by [http://oca.weizmann.ac.il/oca OCA ] on Thu Feb 21 18:12:55 2008''

Proteopedia Page Contributors and Editors (what is this?)Proteopedia Page Contributors and Editors (what is this?)

OCA