1viq: Difference between revisions
No edit summary |
No edit summary |
||
(2 intermediate revisions by the same user not shown) | |||
Line 1: | Line 1: | ||
==Crystal structure of putative ADP ribose pyrophosphatase== | ==Crystal structure of putative ADP ribose pyrophosphatase== | ||
<StructureSection load='1viq' size='340' side='right' caption='[[1viq]], [[Resolution|resolution]] 2.40Å' scene=''> | <StructureSection load='1viq' size='340' side='right'caption='[[1viq]], [[Resolution|resolution]] 2.40Å' scene=''> | ||
== Structural highlights == | == Structural highlights == | ||
<table><tr><td colspan='2'>[[1viq]] is a 3 chain structure with sequence from [ | <table><tr><td colspan='2'>[[1viq]] is a 3 chain structure with sequence from [https://en.wikipedia.org/wiki/Escherichia_coli Escherichia coli]. Full crystallographic information is available from [http://oca.weizmann.ac.il/oca-bin/ocashort?id=1VIQ OCA]. For a <b>guided tour on the structure components</b> use [https://proteopedia.org/fgij/fg.htm?mol=1VIQ FirstGlance]. <br> | ||
</td></tr><tr id=' | </td></tr><tr id='method'><td class="sblockLbl"><b>[[Empirical_models|Method:]]</b></td><td class="sblockDat" id="methodDat">X-ray diffraction, [[Resolution|Resolution]] 2.4Å</td></tr> | ||
<tr id='resources'><td class="sblockLbl"><b>Resources:</b></td><td class="sblockDat"><span class='plainlinks'>[https://proteopedia.org/fgij/fg.htm?mol=1viq FirstGlance], [http://oca.weizmann.ac.il/oca-bin/ocaids?id=1viq OCA], [https://pdbe.org/1viq PDBe], [https://www.rcsb.org/pdb/explore.do?structureId=1viq RCSB], [https://www.ebi.ac.uk/pdbsum/1viq PDBsum], [https://prosat.h-its.org/prosat/prosatexe?pdbcode=1viq ProSAT]</span></td></tr> | |||
<tr id='resources'><td class="sblockLbl"><b>Resources:</b></td><td class="sblockDat"><span class='plainlinks'>[ | |||
</table> | </table> | ||
== Function == | == Function == | ||
[ | [https://www.uniprot.org/uniprot/ADPP_ECOLI ADPP_ECOLI] Acts on ADP-mannose and ADP-glucose as well as ADP-ribose. Prevents glycogen biosynthesis. The reaction catalyzed by this enzyme is a limiting step of the gluconeogenic process.<ref>PMID:11416161</ref> | ||
== Evolutionary Conservation == | == Evolutionary Conservation == | ||
[[Image:Consurf_key_small.gif|200px|right]] | [[Image:Consurf_key_small.gif|200px|right]] | ||
Check<jmol> | Check<jmol> | ||
<jmolCheckbox> | <jmolCheckbox> | ||
<scriptWhenChecked>select protein; define ~consurf_to_do selected; consurf_initial_scene = true; script "/wiki/ConSurf/vi/1viq_consurf.spt"</scriptWhenChecked> | <scriptWhenChecked>; select protein; define ~consurf_to_do selected; consurf_initial_scene = true; script "/wiki/ConSurf/vi/1viq_consurf.spt"</scriptWhenChecked> | ||
<scriptWhenUnchecked>script /wiki/extensions/Proteopedia/spt/initialview01.spt</scriptWhenUnchecked> | <scriptWhenUnchecked>script /wiki/extensions/Proteopedia/spt/initialview01.spt</scriptWhenUnchecked> | ||
<text>to colour the structure by Evolutionary Conservation</text> | <text>to colour the structure by Evolutionary Conservation</text> | ||
Line 28: | Line 28: | ||
</div> | </div> | ||
<div class="pdbe-citations 1viq" style="background-color:#fffaf0;"></div> | <div class="pdbe-citations 1viq" style="background-color:#fffaf0;"></div> | ||
==See Also== | |||
*[[ADP-ribose pyrophosphatase 3D structures|ADP-ribose pyrophosphatase 3D structures]] | |||
== References == | == References == | ||
<references/> | <references/> | ||
__TOC__ | __TOC__ | ||
</StructureSection> | </StructureSection> | ||
[[Category: | [[Category: Escherichia coli]] | ||
[[Category: | [[Category: Large Structures]] | ||
[[Category: GenomiX | [[Category: Structural GenomiX]] | ||
Latest revision as of 03:04, 28 December 2023
Crystal structure of putative ADP ribose pyrophosphataseCrystal structure of putative ADP ribose pyrophosphatase
Structural highlights
FunctionADPP_ECOLI Acts on ADP-mannose and ADP-glucose as well as ADP-ribose. Prevents glycogen biosynthesis. The reaction catalyzed by this enzyme is a limiting step of the gluconeogenic process.[1] Evolutionary Conservation![]() Check, as determined by ConSurfDB. You may read the explanation of the method and the full data available from ConSurf. Publication Abstract from PubMedThe targets of the Structural GenomiX (SGX) bacterial genomics project were proteins conserved in multiple prokaryotic organisms with no obvious sequence homolog in the Protein Data Bank of known structures. The outcome of this work was 80 structures, covering 60 unique sequences and 49 different genes. Experimental phase determination from proteins incorporating Se-Met was carried out for 45 structures with most of the remainder solved by molecular replacement using members of the experimentally phased set as search models. An automated tool was developed to deposit these structures in the Protein Data Bank, along with the associated X-ray diffraction data (including refined experimental phases) and experimentally confirmed sequences. BLAST comparisons of the SGX structures with structures that had appeared in the Protein Data Bank over the intervening 3.5 years since the SGX target list had been compiled identified homologs for 49 of the 60 unique sequences represented by the SGX structures. This result indicates that, for bacterial structures that are relatively easy to express, purify, and crystallize, the structural coverage of gene space is proceeding rapidly. More distant sequence-structure relationships between the SGX and PDB structures were investigated using PDB-BLAST and Combinatorial Extension (CE). Only one structure, SufD, has a truly unique topology compared to all folds in the PDB. Structural analysis of a set of proteins resulting from a bacterial genomics project.,Badger J, Sauder JM, Adams JM, Antonysamy S, Bain K, Bergseid MG, Buchanan SG, Buchanan MD, Batiyenko Y, Christopher JA, Emtage S, Eroshkina A, Feil I, Furlong EB, Gajiwala KS, Gao X, He D, Hendle J, Huber A, Hoda K, Kearins P, Kissinger C, Laubert B, Lewis HA, Lin J, Loomis K, Lorimer D, Louie G, Maletic M, Marsh CD, Miller I, Molinari J, Muller-Dieckmann HJ, Newman JM, Noland BW, Pagarigan B, Park F, Peat TS, Post KW, Radojicic S, Ramos A, Romero R, Rutter ME, Sanderson WE, Schwinn KD, Tresser J, Winhoven J, Wright TA, Wu L, Xu J, Harris TJ Proteins. 2005 Sep 1;60(4):787-96. PMID:16021622[2] From MEDLINE®/PubMed®, a database of the U.S. National Library of Medicine. See AlsoReferences
|
|