4au7: Difference between revisions
No edit summary |
No edit summary |
||
(4 intermediate revisions by the same user not shown) | |||
Line 1: | Line 1: | ||
== | ==The structure of the Suv4-20h2 ternary complex with histone H4== | ||
[[http://www.uniprot.org/uniprot/ | <StructureSection load='4au7' size='340' side='right'caption='[[4au7]], [[Resolution|resolution]] 2.07Å' scene=''> | ||
== Structural highlights == | |||
<table><tr><td colspan='2'>[[4au7]] is a 3 chain structure with sequence from [https://en.wikipedia.org/wiki/Mus_musculus Mus musculus]. Full crystallographic information is available from [http://oca.weizmann.ac.il/oca-bin/ocashort?id=4AU7 OCA]. For a <b>guided tour on the structure components</b> use [https://proteopedia.org/fgij/fg.htm?mol=4AU7 FirstGlance]. <br> | |||
</td></tr><tr id='method'><td class="sblockLbl"><b>[[Empirical_models|Method:]]</b></td><td class="sblockDat" id="methodDat">X-ray diffraction, [[Resolution|Resolution]] 2.07Å</td></tr> | |||
<tr id='ligand'><td class="sblockLbl"><b>[[Ligand|Ligands:]]</b></td><td class="sblockDat" id="ligandDat"><scene name='pdbligand=EDO:1,2-ETHANEDIOL'>EDO</scene>, <scene name='pdbligand=MLY:N-DIMETHYL-LYSINE'>MLY</scene>, <scene name='pdbligand=SAH:S-ADENOSYL-L-HOMOCYSTEINE'>SAH</scene>, <scene name='pdbligand=ZN:ZINC+ION'>ZN</scene></td></tr> | |||
<tr id='resources'><td class="sblockLbl"><b>Resources:</b></td><td class="sblockDat"><span class='plainlinks'>[https://proteopedia.org/fgij/fg.htm?mol=4au7 FirstGlance], [http://oca.weizmann.ac.il/oca-bin/ocaids?id=4au7 OCA], [https://pdbe.org/4au7 PDBe], [https://www.rcsb.org/pdb/explore.do?structureId=4au7 RCSB], [https://www.ebi.ac.uk/pdbsum/4au7 PDBsum], [https://prosat.h-its.org/prosat/prosatexe?pdbcode=4au7 ProSAT]</span></td></tr> | |||
</table> | |||
== Function == | |||
[https://www.uniprot.org/uniprot/KMT5C_MOUSE KMT5C_MOUSE] Histone methyltransferase that specifically methylates monomethylated 'Lys-20' (H4K20me1) and dimethylated 'Lys-20' (H4K20me2) of histone H4 to produce respectively dimethylated 'Lys-20' (H4K20me2) and trimethylated 'Lys-20' (H4K20me3) and thus regulates transcription and maintenance of genome integrity (PubMed:15145825, PubMed:28114273). In vitro also methylates unmodified 'Lys-20' (H4K20me0) of histone H4 and nucleosomes (By similarity). H4 'Lys-20' trimethylation represents a specific tag for epigenetic transcriptional repression (PubMed:15145825). Mainly functions in pericentric heterochromatin regions, thereby playing a central role in the establishment of constitutive heterochromatin in these regions (PubMed:15145825). KMT5B is targeted to histone H3 via its interaction with RB1 family proteins (RB1, RBL1 and RBL2) (PubMed:15750587, PubMed:16612004). Facilitates TP53BP1 foci formation upon DNA damage and proficient non-homologous end-joining (NHEJ)-directed DNA repair by catalyzing the di- and trimethylation of 'Lys-20' of histone H4 (By similarity). May play a role in class switch reconbination by catalyzing the di- and trimethylation of 'Lys-20' of histone H4 (PubMed:28114273).[UniProtKB:Q86Y97]<ref>PMID:15145825</ref> <ref>PMID:15750587</ref> <ref>PMID:16612004</ref> <ref>PMID:28114273</ref> | |||
<div style="background-color:#fffaf0;"> | |||
== Publication Abstract from PubMed == | |||
The delivery of site-specific post-translational modifications to histones generates an epigenetic regulatory network that directs fundamental DNA-mediated processes and governs key stages in development. Methylation of histone H4 lysine-20 has been implicated in DNA repair, transcriptional silencing, genomic stability and regulation of replication. We present the structure of the histone H4K20 methyltransferase Suv4-20h2 in complex with its histone H4 peptide substrate and S-adenosyl methionine cofactor. Analysis of the structure reveals that the Suv4-20h2 active site diverges from the canonical SET domain configuration and generates a high degree of both substrate and product specificity. Together with supporting biochemical data comparing Suv4-20h1 and Suv4-20h2, we demonstrate that the Suv4-20 family enzymes take a previously mono-methylated H4K20 substrate and generate an exclusively di-methylated product. We therefore predict that other enzymes are responsible for the tri-methylation of histone H4K20 that marks silenced heterochromatin. | |||
A novel route to product specificity in the Suv4-20 family of histone H4K20 methyltransferases.,Southall SM, Cronin NB, Wilson JR Nucleic Acids Res. 2013 Sep 18. PMID:24049080<ref>PMID:24049080</ref> | |||
From MEDLINE®/PubMed®, a database of the U.S. National Library of Medicine.<br> | |||
</div> | |||
<div class="pdbe-citations 4au7" style="background-color:#fffaf0;"></div> | |||
==See Also== | ==See Also== | ||
*[[Histone methyltransferase|Histone methyltransferase]] | *[[Histone methyltransferase 3D structures|Histone methyltransferase 3D structures]] | ||
== References == | |||
== | <references/> | ||
__TOC__ | |||
[[Category: | </StructureSection> | ||
[[Category: | [[Category: Large Structures]] | ||
[[Category: Cronin | [[Category: Mus musculus]] | ||
[[Category: Southall | [[Category: Cronin NB]] | ||
[[Category: Wilson | [[Category: Southall SM]] | ||
[[Category: Wilson JR]] | |||
Latest revision as of 14:35, 20 December 2023
The structure of the Suv4-20h2 ternary complex with histone H4The structure of the Suv4-20h2 ternary complex with histone H4
Structural highlights
FunctionKMT5C_MOUSE Histone methyltransferase that specifically methylates monomethylated 'Lys-20' (H4K20me1) and dimethylated 'Lys-20' (H4K20me2) of histone H4 to produce respectively dimethylated 'Lys-20' (H4K20me2) and trimethylated 'Lys-20' (H4K20me3) and thus regulates transcription and maintenance of genome integrity (PubMed:15145825, PubMed:28114273). In vitro also methylates unmodified 'Lys-20' (H4K20me0) of histone H4 and nucleosomes (By similarity). H4 'Lys-20' trimethylation represents a specific tag for epigenetic transcriptional repression (PubMed:15145825). Mainly functions in pericentric heterochromatin regions, thereby playing a central role in the establishment of constitutive heterochromatin in these regions (PubMed:15145825). KMT5B is targeted to histone H3 via its interaction with RB1 family proteins (RB1, RBL1 and RBL2) (PubMed:15750587, PubMed:16612004). Facilitates TP53BP1 foci formation upon DNA damage and proficient non-homologous end-joining (NHEJ)-directed DNA repair by catalyzing the di- and trimethylation of 'Lys-20' of histone H4 (By similarity). May play a role in class switch reconbination by catalyzing the di- and trimethylation of 'Lys-20' of histone H4 (PubMed:28114273).[UniProtKB:Q86Y97][1] [2] [3] [4] Publication Abstract from PubMedThe delivery of site-specific post-translational modifications to histones generates an epigenetic regulatory network that directs fundamental DNA-mediated processes and governs key stages in development. Methylation of histone H4 lysine-20 has been implicated in DNA repair, transcriptional silencing, genomic stability and regulation of replication. We present the structure of the histone H4K20 methyltransferase Suv4-20h2 in complex with its histone H4 peptide substrate and S-adenosyl methionine cofactor. Analysis of the structure reveals that the Suv4-20h2 active site diverges from the canonical SET domain configuration and generates a high degree of both substrate and product specificity. Together with supporting biochemical data comparing Suv4-20h1 and Suv4-20h2, we demonstrate that the Suv4-20 family enzymes take a previously mono-methylated H4K20 substrate and generate an exclusively di-methylated product. We therefore predict that other enzymes are responsible for the tri-methylation of histone H4K20 that marks silenced heterochromatin. A novel route to product specificity in the Suv4-20 family of histone H4K20 methyltransferases.,Southall SM, Cronin NB, Wilson JR Nucleic Acids Res. 2013 Sep 18. PMID:24049080[5] From MEDLINE®/PubMed®, a database of the U.S. National Library of Medicine. See AlsoReferences
|
|