4aid: Difference between revisions

From Proteopedia
Jump to navigation Jump to search
m Protected "4aid" [edit=sysop:move=sysop]
No edit summary
 
(9 intermediate revisions by the same user not shown)
Line 1: Line 1:
'''Unreleased structure'''


The entry 4aid is ON HOLD
==Crystal structure of C. crescentus PNPase bound to RNase E recognition peptide==
<StructureSection load='4aid' size='340' side='right'caption='[[4aid]], [[Resolution|resolution]] 2.60&Aring;' scene=''>
== Structural highlights ==
<table><tr><td colspan='2'>[[4aid]] is a 6 chain structure with sequence from [https://en.wikipedia.org/wiki/Caulobacter_vibrioides_CB15 Caulobacter vibrioides CB15]. Full crystallographic information is available from [http://oca.weizmann.ac.il/oca-bin/ocashort?id=4AID OCA]. For a <b>guided tour on the structure components</b> use [https://proteopedia.org/fgij/fg.htm?mol=4AID FirstGlance]. <br>
</td></tr><tr id='method'><td class="sblockLbl"><b>[[Empirical_models|Method:]]</b></td><td class="sblockDat" id="methodDat">X-ray diffraction, [[Resolution|Resolution]] 2.6&#8491;</td></tr>
<tr id='ligand'><td class="sblockLbl"><b>[[Ligand|Ligands:]]</b></td><td class="sblockDat" id="ligandDat"><scene name='pdbligand=PO4:PHOSPHATE+ION'>PO4</scene></td></tr>
<tr id='resources'><td class="sblockLbl"><b>Resources:</b></td><td class="sblockDat"><span class='plainlinks'>[https://proteopedia.org/fgij/fg.htm?mol=4aid FirstGlance], [http://oca.weizmann.ac.il/oca-bin/ocaids?id=4aid OCA], [https://pdbe.org/4aid PDBe], [https://www.rcsb.org/pdb/explore.do?structureId=4aid RCSB], [https://www.ebi.ac.uk/pdbsum/4aid PDBsum], [https://prosat.h-its.org/prosat/prosatexe?pdbcode=4aid ProSAT]</span></td></tr>
</table>
== Function ==
[https://www.uniprot.org/uniprot/PNP_CAUVC PNP_CAUVC] Involved in mRNA degradation. Catalyzes the phosphorolysis of single-stranded polyribonucleotides processively in the 3'- to 5'-direction.[HAMAP-Rule:MF_01595]
<div style="background-color:#fffaf0;">
== Publication Abstract from PubMed ==
Polynucleotide phosphorylase (PNPase) is an exoribonuclease that cleaves single-stranded RNA substrates with 3'-5' directionality and processive behaviour. Its ring-like, trimeric architecture creates a central channel where phosphorolytic active sites reside. One face of the ring is decorated with RNA-binding K-homology (KH) and S1 domains, but exactly how these domains help to direct the 3' end of single-stranded RNA substrates towards the active sites is an unsolved puzzle. Insight into this process is provided by our crystal structures of RNA-bound and apo Caulobacter crescentus PNPase. In the RNA-free form, the S1 domains adopt a 'splayed' conformation that may facilitate capture of RNA substrates. In the RNA-bound structure, the three KH domains collectively close upon the RNA and direct the 3' end towards a constricted aperture at the entrance of the central channel. The KH domains make non-equivalent interactions with the RNA, and there is a marked asymmetry within the catalytic core of the enzyme. On the basis of these data, we propose that structural non-equivalence, induced upon RNA binding, helps to channel substrate to the active sites through mechanical ratcheting. Structural and biochemical analyses also reveal the basis for PNPase association with RNase E in the multi-enzyme RNA degradosome assembly of the alpha-proteobacteria.


Authors: Hardwick, S.W., Gubbey, T., Hug, I., Jenal, U., Luisi, B.F.
Crystal structure of Caulobacter crescentus polynucleotide phosphorylase reveals a mechanism of RNA substrate channelling and RNA degradosome assembly.,Hardwick SW, Gubbey T, Hug I, Jenal U, Luisi BF Open Biol. 2012 Apr;2(4):120028. PMID:22724061<ref>PMID:22724061</ref>


Description: Crystal structure of C. crescentus PNPase bound to RNase E recognition peptide
From MEDLINE&reg;/PubMed&reg;, a database of the U.S. National Library of Medicine.<br>
</div>
<div class="pdbe-citations 4aid" style="background-color:#fffaf0;"></div>
 
==See Also==
*[[Ribonuclease 3D structures|Ribonuclease 3D structures]]
== References ==
<references/>
__TOC__
</StructureSection>
[[Category: Caulobacter vibrioides CB15]]
[[Category: Large Structures]]
[[Category: Gubbey T]]
[[Category: Hardwick SW]]
[[Category: Hug I]]
[[Category: Jenal U]]
[[Category: Luisi BF]]

Latest revision as of 14:27, 20 December 2023

Crystal structure of C. crescentus PNPase bound to RNase E recognition peptideCrystal structure of C. crescentus PNPase bound to RNase E recognition peptide

Structural highlights

4aid is a 6 chain structure with sequence from Caulobacter vibrioides CB15. Full crystallographic information is available from OCA. For a guided tour on the structure components use FirstGlance.
Method:X-ray diffraction, Resolution 2.6Å
Ligands:
Resources:FirstGlance, OCA, PDBe, RCSB, PDBsum, ProSAT

Function

PNP_CAUVC Involved in mRNA degradation. Catalyzes the phosphorolysis of single-stranded polyribonucleotides processively in the 3'- to 5'-direction.[HAMAP-Rule:MF_01595]

Publication Abstract from PubMed

Polynucleotide phosphorylase (PNPase) is an exoribonuclease that cleaves single-stranded RNA substrates with 3'-5' directionality and processive behaviour. Its ring-like, trimeric architecture creates a central channel where phosphorolytic active sites reside. One face of the ring is decorated with RNA-binding K-homology (KH) and S1 domains, but exactly how these domains help to direct the 3' end of single-stranded RNA substrates towards the active sites is an unsolved puzzle. Insight into this process is provided by our crystal structures of RNA-bound and apo Caulobacter crescentus PNPase. In the RNA-free form, the S1 domains adopt a 'splayed' conformation that may facilitate capture of RNA substrates. In the RNA-bound structure, the three KH domains collectively close upon the RNA and direct the 3' end towards a constricted aperture at the entrance of the central channel. The KH domains make non-equivalent interactions with the RNA, and there is a marked asymmetry within the catalytic core of the enzyme. On the basis of these data, we propose that structural non-equivalence, induced upon RNA binding, helps to channel substrate to the active sites through mechanical ratcheting. Structural and biochemical analyses also reveal the basis for PNPase association with RNase E in the multi-enzyme RNA degradosome assembly of the alpha-proteobacteria.

Crystal structure of Caulobacter crescentus polynucleotide phosphorylase reveals a mechanism of RNA substrate channelling and RNA degradosome assembly.,Hardwick SW, Gubbey T, Hug I, Jenal U, Luisi BF Open Biol. 2012 Apr;2(4):120028. PMID:22724061[1]

From MEDLINE®/PubMed®, a database of the U.S. National Library of Medicine.

See Also

References

  1. Hardwick SW, Gubbey T, Hug I, Jenal U, Luisi BF. Crystal structure of Caulobacter crescentus polynucleotide phosphorylase reveals a mechanism of RNA substrate channelling and RNA degradosome assembly. Open Biol. 2012 Apr;2(4):120028. PMID:22724061 doi:10.1098/rsob.120028

4aid, resolution 2.60Å

Drag the structure with the mouse to rotate

Proteopedia Page Contributors and Editors (what is this?)Proteopedia Page Contributors and Editors (what is this?)

OCA