3ztt: Difference between revisions
No edit summary |
No edit summary |
||
(One intermediate revision by the same user not shown) | |||
Line 1: | Line 1: | ||
==Crystal structure of pneumococcal surface antigen PsaA with manganese== | ==Crystal structure of pneumococcal surface antigen PsaA with manganese== | ||
<StructureSection load='3ztt' size='340' side='right' caption='[[3ztt]], [[Resolution|resolution]] 2.70Å' scene=''> | <StructureSection load='3ztt' size='340' side='right'caption='[[3ztt]], [[Resolution|resolution]] 2.70Å' scene=''> | ||
== Structural highlights == | == Structural highlights == | ||
<table><tr><td colspan='2'>[[3ztt]] is a 4 chain structure with sequence from [ | <table><tr><td colspan='2'>[[3ztt]] is a 4 chain structure with sequence from [https://en.wikipedia.org/wiki/Streptococcus_pneumoniae Streptococcus pneumoniae]. Full crystallographic information is available from [http://oca.weizmann.ac.il/oca-bin/ocashort?id=3ZTT OCA]. For a <b>guided tour on the structure components</b> use [https://proteopedia.org/fgij/fg.htm?mol=3ZTT FirstGlance]. <br> | ||
</td></tr><tr id='ligand'><td class="sblockLbl"><b>[[Ligand|Ligands:]]</b></td><td class="sblockDat"><scene name='pdbligand=MN:MANGANESE+(II)+ION'>MN</scene></td></tr> | </td></tr><tr id='method'><td class="sblockLbl"><b>[[Empirical_models|Method:]]</b></td><td class="sblockDat" id="methodDat">X-ray diffraction, [[Resolution|Resolution]] 2.7Å</td></tr> | ||
<tr id='resources'><td class="sblockLbl"><b>Resources:</b></td><td class="sblockDat"><span class='plainlinks'>[ | <tr id='ligand'><td class="sblockLbl"><b>[[Ligand|Ligands:]]</b></td><td class="sblockDat" id="ligandDat"><scene name='pdbligand=MN:MANGANESE+(II)+ION'>MN</scene></td></tr> | ||
<tr id='resources'><td class="sblockLbl"><b>Resources:</b></td><td class="sblockDat"><span class='plainlinks'>[https://proteopedia.org/fgij/fg.htm?mol=3ztt FirstGlance], [http://oca.weizmann.ac.il/oca-bin/ocaids?id=3ztt OCA], [https://pdbe.org/3ztt PDBe], [https://www.rcsb.org/pdb/explore.do?structureId=3ztt RCSB], [https://www.ebi.ac.uk/pdbsum/3ztt PDBsum], [https://prosat.h-its.org/prosat/prosatexe?pdbcode=3ztt ProSAT]</span></td></tr> | |||
</table> | </table> | ||
== Function == | == Function == | ||
[ | [https://www.uniprot.org/uniprot/MTSA_STRPN MTSA_STRPN] Part of an ATP-driven transport system for manganese. Also act as an adhesin which is involved on adherence to extracellular matrix. It is an important factor in pathogenesis and infection. | ||
<div style="background-color:#fffaf0;"> | <div style="background-color:#fffaf0;"> | ||
== Publication Abstract from PubMed == | == Publication Abstract from PubMed == | ||
Line 20: | Line 21: | ||
==See Also== | ==See Also== | ||
*[[Adhesin|Adhesin]] | *[[Adhesin 3D structures|Adhesin 3D structures]] | ||
== References == | == References == | ||
<references/> | <references/> | ||
__TOC__ | __TOC__ | ||
</StructureSection> | </StructureSection> | ||
[[Category: Kobe | [[Category: Large Structures]] | ||
[[Category: Lawrence | [[Category: Streptococcus pneumoniae]] | ||
[[Category: McDevitt | [[Category: Kobe B]] | ||
[[Category: McEwan | [[Category: Lawrence MC]] | ||
[[Category: Ogunniyi | [[Category: McDevitt CA]] | ||
[[Category: Paton | [[Category: McEwan AG]] | ||
[[Category: Valkov | [[Category: Ogunniyi AD]] | ||
[[Category: Paton JC]] | |||
[[Category: Valkov E]] |
Latest revision as of 14:12, 20 December 2023
Crystal structure of pneumococcal surface antigen PsaA with manganeseCrystal structure of pneumococcal surface antigen PsaA with manganese
Structural highlights
FunctionMTSA_STRPN Part of an ATP-driven transport system for manganese. Also act as an adhesin which is involved on adherence to extracellular matrix. It is an important factor in pathogenesis and infection. Publication Abstract from PubMedTransition row metal ions are both essential and toxic to microorganisms. Zinc in excess has significant toxicity to bacteria, and host release of Zn(II) at mucosal surfaces is an important innate defence mechanism. However, the molecular mechanisms by which Zn(II) affords protection have not been defined. We show that in Streptococcus pneumoniae extracellular Zn(II) inhibits the acquisition of the essential metal Mn(II) by competing for binding to the solute binding protein PsaA. We show that, although Mn(II) is the high-affinity substrate for PsaA, Zn(II) can still bind, albeit with a difference in affinity of nearly two orders of magnitude. Despite the difference in metal ion affinities, high-resolution structures of PsaA in complex with Mn(II) or Zn(II) showed almost no difference. However, Zn(II)-PsaA is significantly more thermally stable than Mn(II)-PsaA, suggesting that Zn(II) binding may be irreversible. In vitro growth analyses show that extracellular Zn(II) is able to inhibit Mn(II) intracellular accumulation with little effect on intracellular Zn(II). The phenotype of S. pneumoniae grown at high Zn(II):Mn(II) ratios, i.e. induced Mn(II) starvation, closely mimicked a DeltapsaA mutant, which is unable to accumulate Mn(II). S. pneumoniae infection in vivo elicits massive elevation of the Zn(II):Mn(II) ratio and, in vitro, these Zn(II):Mn(II) ratios inhibited growth due to Mn(II) starvation, resulting in heightened sensitivity to oxidative stress and polymorphonuclear leucocyte killing. These results demonstrate that microbial susceptibility to Zn(II) toxicity is mediated by extracellular cation competition and that this can be harnessed by the innate immune response. A molecular mechanism for bacterial susceptibility to zinc.,McDevitt CA, Ogunniyi AD, Valkov E, Lawrence MC, Kobe B, McEwan AG, Paton JC PLoS Pathog. 2011 Nov;7(11):e1002357. Epub 2011 Nov 3. PMID:22072971[1] From MEDLINE®/PubMed®, a database of the U.S. National Library of Medicine. See AlsoReferences
|
|