2ypu: Difference between revisions

From Proteopedia
Jump to navigation Jump to search
No edit summary
No edit summary
 
(6 intermediate revisions by the same user not shown)
Line 1: Line 1:
==human insulin degrading enzyme E111Q in complex with inhibitor compound 41367==
==human insulin degrading enzyme E111Q in complex with inhibitor compound 41367==
<StructureSection load='2ypu' size='340' side='right' caption='[[2ypu]], [[Resolution|resolution]] 2.80&Aring;' scene=''>
<StructureSection load='2ypu' size='340' side='right'caption='[[2ypu]], [[Resolution|resolution]] 2.80&Aring;' scene=''>
== Structural highlights ==
== Structural highlights ==
[[2ypu]] is a 2 chain structure with sequence from [http://en.wikipedia.org/wiki/Human Human]. This structure supersedes the now removed PDB entry [http://oca.weizmann.ac.il/oca-bin/send-pdb?obs=1&id=2yb3 2yb3]. Full crystallographic information is available from [http://oca.weizmann.ac.il/oca-bin/ocashort?id=2YPU OCA]. <br>
<table><tr><td colspan='2'>[[2ypu]] is a 2 chain structure with sequence from [https://en.wikipedia.org/wiki/Homo_sapiens Homo sapiens]. This structure supersedes the now removed PDB entry [http://oca.weizmann.ac.il/oca-bin/send-pdb?obs=1&id=2yb3 2yb3]. Full crystallographic information is available from [http://oca.weizmann.ac.il/oca-bin/ocashort?id=2YPU OCA]. For a <b>guided tour on the structure components</b> use [https://proteopedia.org/fgij/fg.htm?mol=2YPU FirstGlance]. <br>
<b>Activity:</b> <span class='plainlinks'>[http://en.wikipedia.org/wiki/Glucokinase Glucokinase], with EC number [http://www.brenda-enzymes.info/php/result_flat.php4?ecno=2.7.1.2 2.7.1.2] </span><br>
</td></tr><tr id='method'><td class="sblockLbl"><b>[[Empirical_models|Method:]]</b></td><td class="sblockDat" id="methodDat">X-ray diffraction, [[Resolution|Resolution]] 2.8&#8491;</td></tr>
<tr id='ligand'><td class="sblockLbl"><b>[[Ligand|Ligands:]]</b></td><td class="sblockDat" id="ligandDat"><scene name='pdbligand=I41:2-[[2-[[(2S)-3-(3H-IMIDAZOL-4-YL)-1-METHOXY-1-OXO-PROPAN-2-YL]AMINO]-2-OXO-ETHYL]-(PHENYLMETHYL)AMINO]ETHANOIC+ACID'>I41</scene>, <scene name='pdbligand=ZN:ZINC+ION'>ZN</scene></td></tr>
<tr id='resources'><td class="sblockLbl"><b>Resources:</b></td><td class="sblockDat"><span class='plainlinks'>[https://proteopedia.org/fgij/fg.htm?mol=2ypu FirstGlance], [http://oca.weizmann.ac.il/oca-bin/ocaids?id=2ypu OCA], [https://pdbe.org/2ypu PDBe], [https://www.rcsb.org/pdb/explore.do?structureId=2ypu RCSB], [https://www.ebi.ac.uk/pdbsum/2ypu PDBsum], [https://prosat.h-its.org/prosat/prosatexe?pdbcode=2ypu ProSAT]</span></td></tr>
</table>
== Function ==
[https://www.uniprot.org/uniprot/IDE_HUMAN IDE_HUMAN] Plays a role in the cellular breakdown of insulin, IAPP, glucagon, bradykinin, kallidin and other peptides, and thereby plays a role in intercellular peptide signaling. Degrades amyloid formed by APP and IAPP. May play a role in the degradation and clearance of naturally secreted amyloid beta-protein by neurons and microglia.<ref>PMID:10684867</ref> <ref>PMID:17613531</ref> <ref>PMID:18986166</ref>  
<div style="background-color:#fffaf0;">
== Publication Abstract from PubMed ==
== Publication Abstract from PubMed ==
Insulin degrading enzyme (IDE) is a highly conserved zinc metalloprotease that is involved in the clearance of various physiologically peptides like amyloid-beta and insulin. This enzyme has been involved in the physiopathology of diabetes and Alzheimer's disease. We describe here a series of small molecules discovered by screening. Co-crystallization of the compounds with IDE revealed a binding both at the permanent exosite and at the discontinuous, conformational catalytic site. Preliminary structure-activity relationships are described. Selective inhibition of amyloid-beta degradation over insulin hydrolysis was possible. Neuroblastoma cells treated with the optimized compound display a dose-dependent increase in amyloid-beta levels.
Insulin degrading enzyme (IDE) is a highly conserved zinc metalloprotease that is involved in the clearance of various physiologically peptides like amyloid-beta and insulin. This enzyme has been involved in the physiopathology of diabetes and Alzheimer's disease. We describe here a series of small molecules discovered by screening. Co-crystallization of the compounds with IDE revealed a binding both at the permanent exosite and at the discontinuous, conformational catalytic site. Preliminary structure-activity relationships are described. Selective inhibition of amyloid-beta degradation over insulin hydrolysis was possible. Neuroblastoma cells treated with the optimized compound display a dose-dependent increase in amyloid-beta levels.
Line 9: Line 16:
Imidazole-derived 2-[N-carbamoylmethyl-alkylamino]acetic acids, substrate-dependent modulators of insulin-degrading enzyme in amyloid-beta hydrolysis.,Charton J, Gauriot M, Guo Q, Hennuyer N, Marechal X, Dumont J, Hamdane M, Pottiez V, Landry V, Sperandio O, Flipo M, Buee L, Staels B, Leroux F, Tang WJ, Deprez B, Deprez-Poulain R Eur J Med Chem. 2014 Apr 4;79C:184-193. doi: 10.1016/j.ejmech.2014.04.009. PMID:24735644<ref>PMID:24735644</ref>
Imidazole-derived 2-[N-carbamoylmethyl-alkylamino]acetic acids, substrate-dependent modulators of insulin-degrading enzyme in amyloid-beta hydrolysis.,Charton J, Gauriot M, Guo Q, Hennuyer N, Marechal X, Dumont J, Hamdane M, Pottiez V, Landry V, Sperandio O, Flipo M, Buee L, Staels B, Leroux F, Tang WJ, Deprez B, Deprez-Poulain R Eur J Med Chem. 2014 Apr 4;79C:184-193. doi: 10.1016/j.ejmech.2014.04.009. PMID:24735644<ref>PMID:24735644</ref>


From MEDLINE®/PubMed®, a database of the U.S. National Library of Medicine.<br>
From MEDLINE&reg;/PubMed&reg;, a database of the U.S. National Library of Medicine.<br>
</div>
<div class="pdbe-citations 2ypu" style="background-color:#fffaf0;"></div>
 
==See Also==
*[[Insulin-degrading enzyme 3D structures|Insulin-degrading enzyme 3D structures]]
== References ==
== References ==
<references/>
<references/>
__TOC__
__TOC__
</StructureSection>
</StructureSection>
[[Category: Human]]
[[Category: Homo sapiens]]
[[Category: Insulysin]]
[[Category: Large Structures]]
[[Category: Deprez, B.]]
[[Category: Deprez B]]
[[Category: Deprez-Poulain, R.]]
[[Category: Deprez-Poulain R]]
[[Category: Guo, Q.]]
[[Category: Guo Q]]
[[Category: Tang, W J.]]
[[Category: Tang W-J]]
[[Category: Hydrolase]]
[[Category: M16a metalloprotease]]

Latest revision as of 13:57, 20 December 2023

human insulin degrading enzyme E111Q in complex with inhibitor compound 41367human insulin degrading enzyme E111Q in complex with inhibitor compound 41367

Structural highlights

2ypu is a 2 chain structure with sequence from Homo sapiens. This structure supersedes the now removed PDB entry 2yb3. Full crystallographic information is available from OCA. For a guided tour on the structure components use FirstGlance.
Method:X-ray diffraction, Resolution 2.8Å
Ligands:,
Resources:FirstGlance, OCA, PDBe, RCSB, PDBsum, ProSAT

Function

IDE_HUMAN Plays a role in the cellular breakdown of insulin, IAPP, glucagon, bradykinin, kallidin and other peptides, and thereby plays a role in intercellular peptide signaling. Degrades amyloid formed by APP and IAPP. May play a role in the degradation and clearance of naturally secreted amyloid beta-protein by neurons and microglia.[1] [2] [3]

Publication Abstract from PubMed

Insulin degrading enzyme (IDE) is a highly conserved zinc metalloprotease that is involved in the clearance of various physiologically peptides like amyloid-beta and insulin. This enzyme has been involved in the physiopathology of diabetes and Alzheimer's disease. We describe here a series of small molecules discovered by screening. Co-crystallization of the compounds with IDE revealed a binding both at the permanent exosite and at the discontinuous, conformational catalytic site. Preliminary structure-activity relationships are described. Selective inhibition of amyloid-beta degradation over insulin hydrolysis was possible. Neuroblastoma cells treated with the optimized compound display a dose-dependent increase in amyloid-beta levels.

Imidazole-derived 2-[N-carbamoylmethyl-alkylamino]acetic acids, substrate-dependent modulators of insulin-degrading enzyme in amyloid-beta hydrolysis.,Charton J, Gauriot M, Guo Q, Hennuyer N, Marechal X, Dumont J, Hamdane M, Pottiez V, Landry V, Sperandio O, Flipo M, Buee L, Staels B, Leroux F, Tang WJ, Deprez B, Deprez-Poulain R Eur J Med Chem. 2014 Apr 4;79C:184-193. doi: 10.1016/j.ejmech.2014.04.009. PMID:24735644[4]

From MEDLINE®/PubMed®, a database of the U.S. National Library of Medicine.

See Also

References

  1. Vekrellis K, Ye Z, Qiu WQ, Walsh D, Hartley D, Chesneau V, Rosner MR, Selkoe DJ. Neurons regulate extracellular levels of amyloid beta-protein via proteolysis by insulin-degrading enzyme. J Neurosci. 2000 Mar 1;20(5):1657-65. PMID:10684867
  2. Im H, Manolopoulou M, Malito E, Shen Y, Zhao J, Neant-Fery M, Sun CY, Meredith SC, Sisodia SS, Leissring MA, Tang WJ. Structure of substrate-free human insulin-degrading enzyme (IDE) and biophysical analysis of ATP-induced conformational switch of IDE. J Biol Chem. 2007 Aug 31;282(35):25453-63. Epub 2007 Jul 5. PMID:17613531 doi:10.1074/jbc.M701590200
  3. Malito E, Ralat LA, Manolopoulou M, Tsay JL, Wadlington NL, Tang WJ. Molecular Bases for the Recognition of Short Peptide Substrates and Cysteine-Directed Modifications of Human Insulin-Degrading Enzyme. Biochemistry. 2008 Nov 6. PMID:18986166 doi:10.1021/bi801192h
  4. Charton J, Gauriot M, Guo Q, Hennuyer N, Marechal X, Dumont J, Hamdane M, Pottiez V, Landry V, Sperandio O, Flipo M, Buee L, Staels B, Leroux F, Tang WJ, Deprez B, Deprez-Poulain R. Imidazole-derived 2-[N-carbamoylmethyl-alkylamino]acetic acids, substrate-dependent modulators of insulin-degrading enzyme in amyloid-beta hydrolysis. Eur J Med Chem. 2014 Apr 4;79C:184-193. doi: 10.1016/j.ejmech.2014.04.009. PMID:24735644 doi:http://dx.doi.org/10.1016/j.ejmech.2014.04.009

2ypu, resolution 2.80Å

Drag the structure with the mouse to rotate

Proteopedia Page Contributors and Editors (what is this?)Proteopedia Page Contributors and Editors (what is this?)

OCA