2ygv: Difference between revisions
m Protected "2ygv" [edit=sysop:move=sysop] |
No edit summary |
||
(8 intermediate revisions by the same user not shown) | |||
Line 1: | Line 1: | ||
The | ==Conserved N-terminal domain of the yeast Histone Chaperone Asf1 in complex with the C-terminal fragment of Rad53== | ||
<StructureSection load='2ygv' size='340' side='right'caption='[[2ygv]], [[Resolution|resolution]] 2.94Å' scene=''> | |||
== Structural highlights == | |||
<table><tr><td colspan='2'>[[2ygv]] is a 8 chain structure with sequence from [https://en.wikipedia.org/wiki/Saccharomyces_cerevisiae Saccharomyces cerevisiae]. Full crystallographic information is available from [http://oca.weizmann.ac.il/oca-bin/ocashort?id=2YGV OCA]. For a <b>guided tour on the structure components</b> use [https://proteopedia.org/fgij/fg.htm?mol=2YGV FirstGlance]. <br> | |||
</td></tr><tr id='method'><td class="sblockLbl"><b>[[Empirical_models|Method:]]</b></td><td class="sblockDat" id="methodDat">X-ray diffraction, [[Resolution|Resolution]] 2.94Å</td></tr> | |||
<tr id='ligand'><td class="sblockLbl"><b>[[Ligand|Ligands:]]</b></td><td class="sblockDat" id="ligandDat"><scene name='pdbligand=GOL:GLYCEROL'>GOL</scene>, <scene name='pdbligand=SO4:SULFATE+ION'>SO4</scene></td></tr> | |||
<tr id='resources'><td class="sblockLbl"><b>Resources:</b></td><td class="sblockDat"><span class='plainlinks'>[https://proteopedia.org/fgij/fg.htm?mol=2ygv FirstGlance], [http://oca.weizmann.ac.il/oca-bin/ocaids?id=2ygv OCA], [https://pdbe.org/2ygv PDBe], [https://www.rcsb.org/pdb/explore.do?structureId=2ygv RCSB], [https://www.ebi.ac.uk/pdbsum/2ygv PDBsum], [https://prosat.h-its.org/prosat/prosatexe?pdbcode=2ygv ProSAT]</span></td></tr> | |||
</table> | |||
== Function == | |||
[https://www.uniprot.org/uniprot/ASF1_YEAST ASF1_YEAST] Histone chaperone that facilitates histone deposition and histone exchange and removal during nucleosome assembly and disassembly. Facilitates histone deposition through both replication-dependent and replication-independent chromatin assembly pathways. Cooperates with chromatin assembly factor 1 (CAF-1) to promote replication-dependent chromatin assembly and with the HIR complex to promote replication-independent chromatin assembly, which may occur during transcription and DNA repair. May be required for the maintenance of a subset of replication elongation factors, including DNA polymerase epsilon, the RFC complex and PCNA, at stalled replication forks. Also required for acetylation of histone H3 on 'Lys-9' and 'Lys-56'.<ref>PMID:9290207</ref> <ref>PMID:10591219</ref> <ref>PMID:11412995</ref> <ref>PMID:11331602</ref> <ref>PMID:11731479</ref> <ref>PMID:11731480</ref> <ref>PMID:11404324</ref> <ref>PMID:11172707</ref> <ref>PMID:11856374</ref> <ref>PMID:11756556</ref> <ref>PMID:12093919</ref> <ref>PMID:14585955</ref> <ref>PMID:15071494</ref> <ref>PMID:15452122</ref> <ref>PMID:15175160</ref> <ref>PMID:15542829</ref> <ref>PMID:15542840</ref> <ref>PMID:15766286</ref> <ref>PMID:16303565</ref> <ref>PMID:15821127</ref> <ref>PMID:15901673</ref> <ref>PMID:16020781</ref> <ref>PMID:16143623</ref> <ref>PMID:16039596</ref> <ref>PMID:15632066</ref> <ref>PMID:15891116</ref> <ref>PMID:16141196</ref> <ref>PMID:15840725</ref> <ref>PMID:16815704</ref> <ref>PMID:16936140</ref> <ref>PMID:16582440</ref> <ref>PMID:16407267</ref> <ref>PMID:17046836</ref> <ref>PMID:16678113</ref> <ref>PMID:16501045</ref> <ref>PMID:16627621</ref> <ref>PMID:17107956</ref> <ref>PMID:17320445</ref> <ref>PMID:14680630</ref> | |||
<div style="background-color:#fffaf0;"> | |||
== Publication Abstract from PubMed == | |||
The histone chaperone Asf1 and the checkpoint kinase Rad53 are found in a complex in budding yeast cells in the absence of genotoxic stress. Our data suggest that this complex involves at least three interaction sites. One site involves the H3-binding surface of Asf11 with an as yet undefined surface of Rad53. A second site is formed by the Rad53-FHA1 domain binding to Asf1-T(270) phosphorylated by casein kinase II. The third site involves the C-terminal 21 amino acids of Rad53 bound to the conserved Asf1 N-terminal domain. The structure of this site showed that the Rad53 C-terminus binds Asf1 in a remarkably similar manner to peptides derived from the histone cochaperones HirA and CAF-I. We call this binding motif, (R/K)R(I/A/V) (L/P), the AIP box for Asf1-Interacting Protein box. Furthermore, C-terminal Rad53-F(820) binds the same pocket of Asf1 as does histone H4-F(100). Thus Rad53 competes with histones H3-H4 and cochaperones HirA/CAF-I for binding to Asf1. Rad53 is phosphorylated and activated upon genotoxic stress. The Asf1-Rad53 complex dissociated when cells were treated with hydroxyurea but not methyl-methane-sulfonate, suggesting a regulation of the complex as a function of the stress. We identified a rad53 mutation that destabilized the Asf1-Rad53 complex and increased the viability of rad9 and rad24 mutants in conditions of genotoxic stress, suggesting that complex stability impacts the DNA damage response. | |||
Surprising complexity of the Asf1 histone chaperone-Rad53 kinase interaction.,Jiao Y, Seeger K, Lautrette A, Gaubert A, Mousson F, Guerois R, Mann C, Ochsenbein F Proc Natl Acad Sci U S A. 2012 Feb 21;109(8):2866-71. Epub 2012 Feb 9. PMID:22323608<ref>PMID:22323608</ref> | |||
From MEDLINE®/PubMed®, a database of the U.S. National Library of Medicine.<br> | |||
</div> | |||
<div class="pdbe-citations 2ygv" style="background-color:#fffaf0;"></div> | |||
==See Also== | |||
*[[Anti-silencing factor 3D structures|Anti-silencing factor 3D structures]] | |||
== References == | |||
<references/> | |||
__TOC__ | |||
</StructureSection> | |||
[[Category: Large Structures]] | |||
[[Category: Saccharomyces cerevisiae]] | |||
[[Category: Charbonnier JB]] | |||
[[Category: Gaubert A]] | |||
[[Category: Guerois R]] | |||
[[Category: Jiao Y]] | |||
[[Category: Lautrette A]] | |||
[[Category: Ledu MH]] | |||
[[Category: Legrand P]] | |||
[[Category: Mann C]] | |||
[[Category: Mousson F]] | |||
[[Category: Murciano B]] | |||
[[Category: Ochsenbein F]] | |||
[[Category: Seeger K]] |
Latest revision as of 13:52, 20 December 2023
Conserved N-terminal domain of the yeast Histone Chaperone Asf1 in complex with the C-terminal fragment of Rad53Conserved N-terminal domain of the yeast Histone Chaperone Asf1 in complex with the C-terminal fragment of Rad53
Structural highlights
FunctionASF1_YEAST Histone chaperone that facilitates histone deposition and histone exchange and removal during nucleosome assembly and disassembly. Facilitates histone deposition through both replication-dependent and replication-independent chromatin assembly pathways. Cooperates with chromatin assembly factor 1 (CAF-1) to promote replication-dependent chromatin assembly and with the HIR complex to promote replication-independent chromatin assembly, which may occur during transcription and DNA repair. May be required for the maintenance of a subset of replication elongation factors, including DNA polymerase epsilon, the RFC complex and PCNA, at stalled replication forks. Also required for acetylation of histone H3 on 'Lys-9' and 'Lys-56'.[1] [2] [3] [4] [5] [6] [7] [8] [9] [10] [11] [12] [13] [14] [15] [16] [17] [18] [19] [20] [21] [22] [23] [24] [25] [26] [27] [28] [29] [30] [31] [32] [33] [34] [35] [36] [37] [38] [39] Publication Abstract from PubMedThe histone chaperone Asf1 and the checkpoint kinase Rad53 are found in a complex in budding yeast cells in the absence of genotoxic stress. Our data suggest that this complex involves at least three interaction sites. One site involves the H3-binding surface of Asf11 with an as yet undefined surface of Rad53. A second site is formed by the Rad53-FHA1 domain binding to Asf1-T(270) phosphorylated by casein kinase II. The third site involves the C-terminal 21 amino acids of Rad53 bound to the conserved Asf1 N-terminal domain. The structure of this site showed that the Rad53 C-terminus binds Asf1 in a remarkably similar manner to peptides derived from the histone cochaperones HirA and CAF-I. We call this binding motif, (R/K)R(I/A/V) (L/P), the AIP box for Asf1-Interacting Protein box. Furthermore, C-terminal Rad53-F(820) binds the same pocket of Asf1 as does histone H4-F(100). Thus Rad53 competes with histones H3-H4 and cochaperones HirA/CAF-I for binding to Asf1. Rad53 is phosphorylated and activated upon genotoxic stress. The Asf1-Rad53 complex dissociated when cells were treated with hydroxyurea but not methyl-methane-sulfonate, suggesting a regulation of the complex as a function of the stress. We identified a rad53 mutation that destabilized the Asf1-Rad53 complex and increased the viability of rad9 and rad24 mutants in conditions of genotoxic stress, suggesting that complex stability impacts the DNA damage response. Surprising complexity of the Asf1 histone chaperone-Rad53 kinase interaction.,Jiao Y, Seeger K, Lautrette A, Gaubert A, Mousson F, Guerois R, Mann C, Ochsenbein F Proc Natl Acad Sci U S A. 2012 Feb 21;109(8):2866-71. Epub 2012 Feb 9. PMID:22323608[40] From MEDLINE®/PubMed®, a database of the U.S. National Library of Medicine. See AlsoReferences
|
|