2xq2: Difference between revisions

From Proteopedia
Jump to navigation Jump to search
New page: '''Unreleased structure''' The entry 2xq2 is ON HOLD Authors: Watanabe, A., Choe, S., Chaptal, V., Rosenberg, J.M., Wright, E.M., Grabe, M., Abramson, J. Description: Structure of the ...
 
No edit summary
 
(11 intermediate revisions by the same user not shown)
Line 1: Line 1:
'''Unreleased structure'''


The entry 2xq2 is ON HOLD
==Structure of the K294A mutant of vSGLT==
<StructureSection load='2xq2' size='340' side='right'caption='[[2xq2]], [[Resolution|resolution]] 2.73&Aring;' scene=''>
== Structural highlights ==
<table><tr><td colspan='2'>[[2xq2]] is a 2 chain structure with sequence from [https://en.wikipedia.org/wiki/Vibrio_parahaemolyticus Vibrio parahaemolyticus]. Full crystallographic information is available from [http://oca.weizmann.ac.il/oca-bin/ocashort?id=2XQ2 OCA]. For a <b>guided tour on the structure components</b> use [https://proteopedia.org/fgij/fg.htm?mol=2XQ2 FirstGlance]. <br>
</td></tr><tr id='method'><td class="sblockLbl"><b>[[Empirical_models|Method:]]</b></td><td class="sblockDat" id="methodDat">X-ray diffraction, [[Resolution|Resolution]] 2.73&#8491;</td></tr>
<tr id='ligand'><td class="sblockLbl"><b>[[Ligand|Ligands:]]</b></td><td class="sblockDat" id="ligandDat"><scene name='pdbligand=PEG:DI(HYDROXYETHYL)ETHER'>PEG</scene></td></tr>
<tr id='resources'><td class="sblockLbl"><b>Resources:</b></td><td class="sblockDat"><span class='plainlinks'>[https://proteopedia.org/fgij/fg.htm?mol=2xq2 FirstGlance], [http://oca.weizmann.ac.il/oca-bin/ocaids?id=2xq2 OCA], [https://pdbe.org/2xq2 PDBe], [https://www.rcsb.org/pdb/explore.do?structureId=2xq2 RCSB], [https://www.ebi.ac.uk/pdbsum/2xq2 PDBsum], [https://prosat.h-its.org/prosat/prosatexe?pdbcode=2xq2 ProSAT]</span></td></tr>
</table>
== Function ==
[https://www.uniprot.org/uniprot/SGLT_VIBPH SGLT_VIBPH] Actively transports glucose into cells by Na(+) cotransport.
<div style="background-color:#fffaf0;">
== Publication Abstract from PubMed ==
Membrane co-transport proteins that use a five-helix inverted repeat motif have recently emerged as one of the largest structural classes of secondary active transporters. However, despite many structural advances there is no clear evidence of how ion and substrate transport are coupled. Here we report a comprehensive study of the sodium/galactose transporter from Vibrio parahaemolyticus (vSGLT), consisting of molecular dynamics simulations, biochemical characterization and a new crystal structure of the inward-open conformation at a resolution of 2.7 A. Our data show that sodium exit causes a reorientation of transmembrane helix 1 that opens an inner gate required for substrate exit, and also triggers minor rigid-body movements in two sets of transmembrane helical bundles. This cascade of events, initiated by sodium release, ensures proper timing of ion and substrate release. Once set in motion, these molecular changes weaken substrate binding to the transporter and allow galactose readily to enter the intracellular space. Additionally, we identify an allosteric pathway between the sodium-binding sites, the unwound portion of transmembrane helix 1 and the substrate-binding site that is essential in the coupling of co-transport.


Authors: Watanabe, A., Choe, S., Chaptal, V., Rosenberg, J.M., Wright, E.M., Grabe, M., Abramson, J.
The mechanism of sodium and substrate release from the binding pocket of vSGLT.,Watanabe A, Choe S, Chaptal V, Rosenberg JM, Wright EM, Grabe M, Abramson J Nature. 2010 Dec 5. PMID:21131949<ref>PMID:21131949</ref>


Description: Structure of the K294A mutant of vSGLT
From MEDLINE&reg;/PubMed&reg;, a database of the U.S. National Library of Medicine.<br>
</div>
<div class="pdbe-citations 2xq2" style="background-color:#fffaf0;"></div>


''Page seeded by [http://oca.weizmann.ac.il/oca OCA ] on Wed Sep 15 10:28:41 2010''
==See Also==
*[[Symporter 3D structures|Symporter 3D structures]]
== References ==
<references/>
__TOC__
</StructureSection>
[[Category: Large Structures]]
[[Category: Vibrio parahaemolyticus]]
[[Category: Abramson J]]
[[Category: Chaptal V]]
[[Category: Choe S]]
[[Category: Grabe M]]
[[Category: Rosenberg JM]]
[[Category: Watanabe A]]
[[Category: Wright EM]]

Latest revision as of 13:37, 20 December 2023

Structure of the K294A mutant of vSGLTStructure of the K294A mutant of vSGLT

Structural highlights

2xq2 is a 2 chain structure with sequence from Vibrio parahaemolyticus. Full crystallographic information is available from OCA. For a guided tour on the structure components use FirstGlance.
Method:X-ray diffraction, Resolution 2.73Å
Ligands:
Resources:FirstGlance, OCA, PDBe, RCSB, PDBsum, ProSAT

Function

SGLT_VIBPH Actively transports glucose into cells by Na(+) cotransport.

Publication Abstract from PubMed

Membrane co-transport proteins that use a five-helix inverted repeat motif have recently emerged as one of the largest structural classes of secondary active transporters. However, despite many structural advances there is no clear evidence of how ion and substrate transport are coupled. Here we report a comprehensive study of the sodium/galactose transporter from Vibrio parahaemolyticus (vSGLT), consisting of molecular dynamics simulations, biochemical characterization and a new crystal structure of the inward-open conformation at a resolution of 2.7 A. Our data show that sodium exit causes a reorientation of transmembrane helix 1 that opens an inner gate required for substrate exit, and also triggers minor rigid-body movements in two sets of transmembrane helical bundles. This cascade of events, initiated by sodium release, ensures proper timing of ion and substrate release. Once set in motion, these molecular changes weaken substrate binding to the transporter and allow galactose readily to enter the intracellular space. Additionally, we identify an allosteric pathway between the sodium-binding sites, the unwound portion of transmembrane helix 1 and the substrate-binding site that is essential in the coupling of co-transport.

The mechanism of sodium and substrate release from the binding pocket of vSGLT.,Watanabe A, Choe S, Chaptal V, Rosenberg JM, Wright EM, Grabe M, Abramson J Nature. 2010 Dec 5. PMID:21131949[1]

From MEDLINE®/PubMed®, a database of the U.S. National Library of Medicine.

See Also

References

  1. Watanabe A, Choe S, Chaptal V, Rosenberg JM, Wright EM, Grabe M, Abramson J. The mechanism of sodium and substrate release from the binding pocket of vSGLT. Nature. 2010 Dec 5. PMID:21131949 doi:10.1038/nature09580

2xq2, resolution 2.73Å

Drag the structure with the mouse to rotate

Proteopedia Page Contributors and Editors (what is this?)Proteopedia Page Contributors and Editors (what is this?)

OCA