2xla: Difference between revisions

From Proteopedia
Jump to navigation Jump to search
No edit summary
No edit summary
 
(7 intermediate revisions by the same user not shown)
Line 1: Line 1:
[[Image:2xla.png|left|200px]]


<!--
==Structure and metal-loading of a soluble periplasm cupro-protein: Cu- CucA-closed==
The line below this paragraph, containing "STRUCTURE_2xla", creates the "Structure Box" on the page.
<StructureSection load='2xla' size='340' side='right'caption='[[2xla]], [[Resolution|resolution]] 1.93&Aring;' scene=''>
You may change the PDB parameter (which sets the PDB file loaded into the applet)  
== Structural highlights ==
or the SCENE parameter (which sets the initial scene displayed when the page is loaded),
<table><tr><td colspan='2'>[[2xla]] is a 4 chain structure with sequence from [https://en.wikipedia.org/wiki/Synechocystis_sp._PCC_6803 Synechocystis sp. PCC 6803]. Full crystallographic information is available from [http://oca.weizmann.ac.il/oca-bin/ocashort?id=2XLA OCA]. For a <b>guided tour on the structure components</b> use [https://proteopedia.org/fgij/fg.htm?mol=2XLA FirstGlance]. <br>
or leave the SCENE parameter empty for the default display.
</td></tr><tr id='method'><td class="sblockLbl"><b>[[Empirical_models|Method:]]</b></td><td class="sblockDat" id="methodDat">X-ray diffraction, [[Resolution|Resolution]] 1.93&#8491;</td></tr>
-->
<tr id='ligand'><td class="sblockLbl"><b>[[Ligand|Ligands:]]</b></td><td class="sblockDat" id="ligandDat"><scene name='pdbligand=CU:COPPER+(II)+ION'>CU</scene>, <scene name='pdbligand=URE:UREA'>URE</scene></td></tr>
{{STRUCTURE_2xla|  PDB=2xla  |  SCENE=  }}
<tr id='resources'><td class="sblockLbl"><b>Resources:</b></td><td class="sblockDat"><span class='plainlinks'>[https://proteopedia.org/fgij/fg.htm?mol=2xla FirstGlance], [http://oca.weizmann.ac.il/oca-bin/ocaids?id=2xla OCA], [https://pdbe.org/2xla PDBe], [https://www.rcsb.org/pdb/explore.do?structureId=2xla RCSB], [https://www.ebi.ac.uk/pdbsum/2xla PDBsum], [https://prosat.h-its.org/prosat/prosatexe?pdbcode=2xla ProSAT]</span></td></tr>
</table>
== Function ==
[https://www.uniprot.org/uniprot/P73600_SYNY3 P73600_SYNY3]
== Evolutionary Conservation ==
[[Image:Consurf_key_small.gif|200px|right]]
Check<jmol>
  <jmolCheckbox>
    <scriptWhenChecked>; select protein; define ~consurf_to_do selected; consurf_initial_scene = true; script "/wiki/ConSurf/xl/2xla_consurf.spt"</scriptWhenChecked>
    <scriptWhenUnchecked>script /wiki/extensions/Proteopedia/spt/initialview01.spt</scriptWhenUnchecked>
    <text>to colour the structure by Evolutionary Conservation</text>
  </jmolCheckbox>
</jmol>, as determined by [http://consurfdb.tau.ac.il/ ConSurfDB]. You may read the [[Conservation%2C_Evolutionary|explanation]] of the method and the full data available from [http://bental.tau.ac.il/new_ConSurfDB/main_output.php?pdb_ID=2xla ConSurf].
<div style="clear:both"></div>
<div style="background-color:#fffaf0;">
== Publication Abstract from PubMed ==
A copper-trafficking pathway was found to enable Cu(2+) occupancy of a soluble periplasm protein, CucA, even when competing Zn(2+) is abundant in the periplasm. Here, we solved the structure of CucA (a new cupin) and found that binding of Cu(2+), but not Zn(2+), quenches the fluorescence of Trp(165), which is adjacent to the metal site. Using this fluorescence probe, we established that CucA becomes partly occupied by Zn(2+) following exposure to equimolar Zn(2+) and Cu(2+). Cu(2+)-CucA is more thermodynamically stable than Zn(2+)-CucA but k((Zn--&gt;Cu)exchange) is slow, raising questions about how the periplasm contains solely the Cu(2+) form. We discovered that a copper-trafficking pathway involving two copper transporters (CtaA and PacS) and a metallochaperone (Atx1) is obligatory for Cu(2+)-CucA to accumulate in the periplasm. There was negligible CucA protein in the periplasm of DeltactaA cells, but the abundance of cucA transcripts was unaltered. Crucially, DeltactaA cells overaccumulate low M(r) copper complexes in the periplasm, and purified apoCucA can readily acquire Cu(2+) from DeltactaA periplasm extracts, but in vivo apoCucA fails to come into contact with these periplasmic copper pools. Instead, copper traffics via a cytoplasmic pathway that is coupled to CucA translocation to the periplasm.


===STRUCTURE AND METAL-LOADING OF A SOLUBLE PERIPLASM CUPRO-PROTEIN: CU-CUCA-CLOSED===
Structure and metal loading of a soluble periplasm cuproprotein.,Waldron KJ, Firbank SJ, Dainty SJ, Perez-Rama M, Tottey S, Robinson NJ J Biol Chem. 2010 Oct 15;285(42):32504-11. Epub 2010 Aug 10. PMID:20702411<ref>PMID:20702411</ref>


 
From MEDLINE&reg;/PubMed&reg;, a database of the U.S. National Library of Medicine.<br>
<!--
</div>
The line below this paragraph, {{ABSTRACT_PUBMED_20702411}}, adds the Publication Abstract to the page
<div class="pdbe-citations 2xla" style="background-color:#fffaf0;"></div>
(as it appears on PubMed at http://www.pubmed.gov), where 20702411 is the PubMed ID number.
== References ==
-->
<references/>
{{ABSTRACT_PUBMED_20702411}}
__TOC__
 
</StructureSection>
==About this Structure==
[[Category: Large Structures]]
[[2xla]] is a 4 chain structure with sequence from [http://en.wikipedia.org/wiki/Synechocystis_sp._pcc_6803 Synechocystis sp. pcc 6803]. Full crystallographic information is available from [http://oca.weizmann.ac.il/oca-bin/ocashort?id=2XLA OCA].
[[Category: Synechocystis sp. PCC 6803]]
 
[[Category: Dainty SJ]]
==Reference==
[[Category: Firbank SJ]]
<ref group="xtra">PMID:020702411</ref><references group="xtra"/>
[[Category: Perez-Rama M]]
[[Category: Synechocystis sp. pcc 6803]]
[[Category: Robinson NJ]]
[[Category: Dainty, S J.]]
[[Category: Tottey S]]
[[Category: Firbank, S J.]]
[[Category: Waldron KJ]]
[[Category: Perez-Rama, M.]]
[[Category: Robinson, N J.]]
[[Category: Tottey, S.]]
[[Category: Waldron, K J.]]

Latest revision as of 13:33, 20 December 2023

Structure and metal-loading of a soluble periplasm cupro-protein: Cu- CucA-closedStructure and metal-loading of a soluble periplasm cupro-protein: Cu- CucA-closed

Structural highlights

2xla is a 4 chain structure with sequence from Synechocystis sp. PCC 6803. Full crystallographic information is available from OCA. For a guided tour on the structure components use FirstGlance.
Method:X-ray diffraction, Resolution 1.93Å
Ligands:,
Resources:FirstGlance, OCA, PDBe, RCSB, PDBsum, ProSAT

Function

P73600_SYNY3

Evolutionary Conservation

Check, as determined by ConSurfDB. You may read the explanation of the method and the full data available from ConSurf.

Publication Abstract from PubMed

A copper-trafficking pathway was found to enable Cu(2+) occupancy of a soluble periplasm protein, CucA, even when competing Zn(2+) is abundant in the periplasm. Here, we solved the structure of CucA (a new cupin) and found that binding of Cu(2+), but not Zn(2+), quenches the fluorescence of Trp(165), which is adjacent to the metal site. Using this fluorescence probe, we established that CucA becomes partly occupied by Zn(2+) following exposure to equimolar Zn(2+) and Cu(2+). Cu(2+)-CucA is more thermodynamically stable than Zn(2+)-CucA but k((Zn-->Cu)exchange) is slow, raising questions about how the periplasm contains solely the Cu(2+) form. We discovered that a copper-trafficking pathway involving two copper transporters (CtaA and PacS) and a metallochaperone (Atx1) is obligatory for Cu(2+)-CucA to accumulate in the periplasm. There was negligible CucA protein in the periplasm of DeltactaA cells, but the abundance of cucA transcripts was unaltered. Crucially, DeltactaA cells overaccumulate low M(r) copper complexes in the periplasm, and purified apoCucA can readily acquire Cu(2+) from DeltactaA periplasm extracts, but in vivo apoCucA fails to come into contact with these periplasmic copper pools. Instead, copper traffics via a cytoplasmic pathway that is coupled to CucA translocation to the periplasm.

Structure and metal loading of a soluble periplasm cuproprotein.,Waldron KJ, Firbank SJ, Dainty SJ, Perez-Rama M, Tottey S, Robinson NJ J Biol Chem. 2010 Oct 15;285(42):32504-11. Epub 2010 Aug 10. PMID:20702411[1]

From MEDLINE®/PubMed®, a database of the U.S. National Library of Medicine.

References

  1. Waldron KJ, Firbank SJ, Dainty SJ, Perez-Rama M, Tottey S, Robinson NJ. Structure and metal loading of a soluble periplasm cuproprotein. J Biol Chem. 2010 Oct 15;285(42):32504-11. Epub 2010 Aug 10. PMID:20702411 doi:10.1074/jbc.M110.153080

2xla, resolution 1.93Å

Drag the structure with the mouse to rotate

Proteopedia Page Contributors and Editors (what is this?)Proteopedia Page Contributors and Editors (what is this?)

OCA