2xf0: Difference between revisions
No edit summary |
No edit summary |
||
(12 intermediate revisions by the same user not shown) | |||
Line 1: | Line 1: | ||
< | ==Crystal structure of checkpoint kinase 1 (Chk1) in complex with inhibitors== | ||
<StructureSection load='2xf0' size='340' side='right'caption='[[2xf0]], [[Resolution|resolution]] 2.40Å' scene=''> | |||
== Structural highlights == | |||
or the | <table><tr><td colspan='2'>[[2xf0]] is a 1 chain structure with sequence from [https://en.wikipedia.org/wiki/Homo_sapiens Homo sapiens]. Full crystallographic information is available from [http://oca.weizmann.ac.il/oca-bin/ocashort?id=2XF0 OCA]. For a <b>guided tour on the structure components</b> use [https://proteopedia.org/fgij/fg.htm?mol=2XF0 FirstGlance]. <br> | ||
</td></tr><tr id='method'><td class="sblockLbl"><b>[[Empirical_models|Method:]]</b></td><td class="sblockDat" id="methodDat">X-ray diffraction, [[Resolution|Resolution]] 2.4Å</td></tr> | |||
- | <tr id='ligand'><td class="sblockLbl"><b>[[Ligand|Ligands:]]</b></td><td class="sblockDat" id="ligandDat"><scene name='pdbligand=4UB:3-PHENYL-6-(1H-PYRAZOL-4-YL)IMIDAZO[1,2-A]PYRAZINE'>4UB</scene>, <scene name='pdbligand=EDO:1,2-ETHANEDIOL'>EDO</scene></td></tr> | ||
<tr id='resources'><td class="sblockLbl"><b>Resources:</b></td><td class="sblockDat"><span class='plainlinks'>[https://proteopedia.org/fgij/fg.htm?mol=2xf0 FirstGlance], [http://oca.weizmann.ac.il/oca-bin/ocaids?id=2xf0 OCA], [https://pdbe.org/2xf0 PDBe], [https://www.rcsb.org/pdb/explore.do?structureId=2xf0 RCSB], [https://www.ebi.ac.uk/pdbsum/2xf0 PDBsum], [https://prosat.h-its.org/prosat/prosatexe?pdbcode=2xf0 ProSAT]</span></td></tr> | |||
</table> | |||
== Function == | |||
[https://www.uniprot.org/uniprot/CHK1_HUMAN CHK1_HUMAN] Serine/threonine-protein kinase which is required for checkpoint-mediated cell cycle arrest and activation of DNA repair in response to the presence of DNA damage or unreplicated DNA. May also negatively regulate cell cycle progression during unperturbed cell cycles. This regulation is achieved by a number of mechanisms that together help to preserve the integrity of the genome. Recognizes the substrate consensus sequence [R-X-X-S/T]. Binds to and phosphorylates CDC25A, CDC25B and CDC25C. Phosphorylation of CDC25A at 'Ser-178' and 'Thr-507' and phosphorylation of CDC25C at 'Ser-216' creates binding sites for 14-3-3 proteins which inhibit CDC25A and CDC25C. Phosphorylation of CDC25A at 'Ser-76', 'Ser-124', 'Ser-178', 'Ser-279' and 'Ser-293' promotes proteolysis of CDC25A. Phosphorylation of CDC25A at 'Ser-76' primes the protein for subsequent phosphorylation at 'Ser-79', 'Ser-82' and 'Ser-88' by NEK11, which is required for polyubiquitination and degradation of CDCD25A. Inhibition of CDC25 leads to increased inhibitory tyrosine phosphorylation of CDK-cyclin complexes and blocks cell cycle progression. Also phosphorylates NEK6. Binds to and phosphorylates RAD51 at 'Thr-309', which promotes the release of RAD51 from BRCA2 and enhances the association of RAD51 with chromatin, thereby promoting DNA repair by homologous recombination. Phosphorylates multiple sites within the C-terminus of TP53, which promotes activation of TP53 by acetylation and promotes cell cycle arrest and suppression of cellular proliferation. Also promotes repair of DNA cross-links through phosphorylation of FANCE. Binds to and phosphorylates TLK1 at 'Ser-743', which prevents the TLK1-dependent phosphorylation of the chromatin assembly factor ASF1A. This may enhance chromatin assembly both in the presence or absence of DNA damage. May also play a role in replication fork maintenance through regulation of PCNA. May regulate the transcription of genes that regulate cell-cycle progression through the phosphorylation of histones. Phosphorylates histone H3.1 (to form H3T11ph), which leads to epigenetic inhibition of a subset of genes. May also phosphorylate RB1 to promote its interaction with the E2F family of transcription factors and subsequent cell cycle arrest.<ref>PMID:9278511</ref> <ref>PMID:10673501</ref> <ref>PMID:11535615</ref> <ref>PMID:12446774</ref> <ref>PMID:12399544</ref> <ref>PMID:12676583</ref> <ref>PMID:12660173</ref> <ref>PMID:14681206</ref> <ref>PMID:12676925</ref> <ref>PMID:12759351</ref> <ref>PMID:14559997</ref> <ref>PMID:14988723</ref> <ref>PMID:15311285</ref> <ref>PMID:15659650</ref> <ref>PMID:15665856</ref> <ref>PMID:15650047</ref> <ref>PMID:16511572</ref> <ref>PMID:16963448</ref> <ref>PMID:17380128</ref> <ref>PMID:17296736</ref> <ref>PMID:18510930</ref> <ref>PMID:18728393</ref> <ref>PMID:18451105</ref> <ref>PMID:18317453</ref> <ref>PMID:19734889</ref> <ref>PMID:20090422</ref> Isoform 2: Endogenous repressor of isoform 1, interacts with, and antagonizes CHK1 to promote the S to G2/M phase transition.<ref>PMID:9278511</ref> <ref>PMID:10673501</ref> <ref>PMID:11535615</ref> <ref>PMID:12446774</ref> <ref>PMID:12399544</ref> <ref>PMID:12676583</ref> <ref>PMID:12660173</ref> <ref>PMID:14681206</ref> <ref>PMID:12676925</ref> <ref>PMID:12759351</ref> <ref>PMID:14559997</ref> <ref>PMID:14988723</ref> <ref>PMID:15311285</ref> <ref>PMID:15659650</ref> <ref>PMID:15665856</ref> <ref>PMID:15650047</ref> <ref>PMID:16511572</ref> <ref>PMID:16963448</ref> <ref>PMID:17380128</ref> <ref>PMID:17296736</ref> <ref>PMID:18510930</ref> <ref>PMID:18728393</ref> <ref>PMID:18451105</ref> <ref>PMID:18317453</ref> <ref>PMID:19734889</ref> <ref>PMID:20090422</ref> | |||
== Evolutionary Conservation == | |||
[[Image:Consurf_key_small.gif|200px|right]] | |||
Check<jmol> | |||
<jmolCheckbox> | |||
<scriptWhenChecked>; select protein; define ~consurf_to_do selected; consurf_initial_scene = true; script "/wiki/ConSurf/xf/2xf0_consurf.spt"</scriptWhenChecked> | |||
<scriptWhenUnchecked>script /wiki/extensions/Proteopedia/spt/initialview01.spt</scriptWhenUnchecked> | |||
<text>to colour the structure by Evolutionary Conservation</text> | |||
</jmolCheckbox> | |||
</jmol>, as determined by [http://consurfdb.tau.ac.il/ ConSurfDB]. You may read the [[Conservation%2C_Evolutionary|explanation]] of the method and the full data available from [http://bental.tau.ac.il/new_ConSurfDB/main_output.php?pdb_ID=2xf0 ConSurf]. | |||
<div style="clear:both"></div> | |||
<div style="background-color:#fffaf0;"> | |||
== Publication Abstract from PubMed == | |||
A range of 3,6-di(hetero)arylimidazo[1,2-a]pyrazine ATP-competitive inhibitors of CHK1 were developed by scaffold hopping from a weakly active screening hit. Efficient synthetic routes for parallel synthesis were developed to prepare analogues with improved potency and ligand efficiency against CHK1. Kinase profiling showed that the imidazo[1,2-a]pyrazines could inhibit other kinases, including CHK2 and ABL, with equivalent or better potency depending on the pendant substitution. These 3,6-di(hetero)aryl imidazo[1,2-a]pyrazines appear to represent a general kinase inhibitor scaffold. | |||
Design and evaluation of 3,6-di(hetero)aryl imidazo[1,2-a]pyrazines as inhibitors of checkpoint and other kinases.,Matthews TP, McHardy T, Klair S, Boxall K, Fisher M, Cherry M, Allen CE, Addison GJ, Ellard J, Aherne GW, Westwood IM, van Montfort R, Garrett MD, Reader JC, Collins I Bioorg Med Chem Lett. 2010 Jul 15;20(14):4045-9. Epub 2010 May 27. PMID:20561787<ref>PMID:20561787</ref> | |||
From MEDLINE®/PubMed®, a database of the U.S. National Library of Medicine.<br> | |||
</div> | |||
<div class="pdbe-citations 2xf0" style="background-color:#fffaf0;"></div> | |||
==See Also== | |||
*[[Serine/threonine protein kinase 3D structures|Serine/threonine protein kinase 3D structures]] | |||
== References == | |||
<references/> | |||
__TOC__ | |||
</StructureSection> | |||
== | |||
== | |||
< | |||
[[Category: Homo sapiens]] | [[Category: Homo sapiens]] | ||
[[Category: | [[Category: Large Structures]] | ||
[[Category: Addison | [[Category: Addison GJ]] | ||
[[Category: Aherne | [[Category: Aherne GW]] | ||
[[Category: Allen | [[Category: Allen CE]] | ||
[[Category: Boxall | [[Category: Boxall K]] | ||
[[Category: Cherry | [[Category: Cherry M]] | ||
[[Category: Collins | [[Category: Collins I]] | ||
[[Category: Ellard | [[Category: Ellard J]] | ||
[[Category: Fisher | [[Category: Fisher M]] | ||
[[Category: Garrett | [[Category: Garrett MD]] | ||
[[Category: Klair | [[Category: Klair S]] | ||
[[Category: Matthews | [[Category: Matthews TP]] | ||
[[Category: | [[Category: McHardy T]] | ||
[[Category: Reader JC]] | |||
[[Category: Reader | [[Category: Westwood IM]] | ||
[[Category: Westwood | [[Category: Van Montfort R]] | ||
[[Category: | |||
Latest revision as of 13:30, 20 December 2023
Crystal structure of checkpoint kinase 1 (Chk1) in complex with inhibitorsCrystal structure of checkpoint kinase 1 (Chk1) in complex with inhibitors
Structural highlights
FunctionCHK1_HUMAN Serine/threonine-protein kinase which is required for checkpoint-mediated cell cycle arrest and activation of DNA repair in response to the presence of DNA damage or unreplicated DNA. May also negatively regulate cell cycle progression during unperturbed cell cycles. This regulation is achieved by a number of mechanisms that together help to preserve the integrity of the genome. Recognizes the substrate consensus sequence [R-X-X-S/T]. Binds to and phosphorylates CDC25A, CDC25B and CDC25C. Phosphorylation of CDC25A at 'Ser-178' and 'Thr-507' and phosphorylation of CDC25C at 'Ser-216' creates binding sites for 14-3-3 proteins which inhibit CDC25A and CDC25C. Phosphorylation of CDC25A at 'Ser-76', 'Ser-124', 'Ser-178', 'Ser-279' and 'Ser-293' promotes proteolysis of CDC25A. Phosphorylation of CDC25A at 'Ser-76' primes the protein for subsequent phosphorylation at 'Ser-79', 'Ser-82' and 'Ser-88' by NEK11, which is required for polyubiquitination and degradation of CDCD25A. Inhibition of CDC25 leads to increased inhibitory tyrosine phosphorylation of CDK-cyclin complexes and blocks cell cycle progression. Also phosphorylates NEK6. Binds to and phosphorylates RAD51 at 'Thr-309', which promotes the release of RAD51 from BRCA2 and enhances the association of RAD51 with chromatin, thereby promoting DNA repair by homologous recombination. Phosphorylates multiple sites within the C-terminus of TP53, which promotes activation of TP53 by acetylation and promotes cell cycle arrest and suppression of cellular proliferation. Also promotes repair of DNA cross-links through phosphorylation of FANCE. Binds to and phosphorylates TLK1 at 'Ser-743', which prevents the TLK1-dependent phosphorylation of the chromatin assembly factor ASF1A. This may enhance chromatin assembly both in the presence or absence of DNA damage. May also play a role in replication fork maintenance through regulation of PCNA. May regulate the transcription of genes that regulate cell-cycle progression through the phosphorylation of histones. Phosphorylates histone H3.1 (to form H3T11ph), which leads to epigenetic inhibition of a subset of genes. May also phosphorylate RB1 to promote its interaction with the E2F family of transcription factors and subsequent cell cycle arrest.[1] [2] [3] [4] [5] [6] [7] [8] [9] [10] [11] [12] [13] [14] [15] [16] [17] [18] [19] [20] [21] [22] [23] [24] [25] [26] Isoform 2: Endogenous repressor of isoform 1, interacts with, and antagonizes CHK1 to promote the S to G2/M phase transition.[27] [28] [29] [30] [31] [32] [33] [34] [35] [36] [37] [38] [39] [40] [41] [42] [43] [44] [45] [46] [47] [48] [49] [50] [51] [52] Evolutionary Conservation![]() Check, as determined by ConSurfDB. You may read the explanation of the method and the full data available from ConSurf. Publication Abstract from PubMedA range of 3,6-di(hetero)arylimidazo[1,2-a]pyrazine ATP-competitive inhibitors of CHK1 were developed by scaffold hopping from a weakly active screening hit. Efficient synthetic routes for parallel synthesis were developed to prepare analogues with improved potency and ligand efficiency against CHK1. Kinase profiling showed that the imidazo[1,2-a]pyrazines could inhibit other kinases, including CHK2 and ABL, with equivalent or better potency depending on the pendant substitution. These 3,6-di(hetero)aryl imidazo[1,2-a]pyrazines appear to represent a general kinase inhibitor scaffold. Design and evaluation of 3,6-di(hetero)aryl imidazo[1,2-a]pyrazines as inhibitors of checkpoint and other kinases.,Matthews TP, McHardy T, Klair S, Boxall K, Fisher M, Cherry M, Allen CE, Addison GJ, Ellard J, Aherne GW, Westwood IM, van Montfort R, Garrett MD, Reader JC, Collins I Bioorg Med Chem Lett. 2010 Jul 15;20(14):4045-9. Epub 2010 May 27. PMID:20561787[53] From MEDLINE®/PubMed®, a database of the U.S. National Library of Medicine. See AlsoReferences
|
|