2x7w: Difference between revisions
No edit summary |
No edit summary |
||
(5 intermediate revisions by the same user not shown) | |||
Line 1: | Line 1: | ||
==Crystal structure of Thermotoga maritima endonuclease IV in the presence of cadmium and zinc== | ==Crystal structure of Thermotoga maritima endonuclease IV in the presence of cadmium and zinc== | ||
<StructureSection load='2x7w' size='340' side='right' caption='[[2x7w]], [[Resolution|resolution]] 2.36Å' scene=''> | <StructureSection load='2x7w' size='340' side='right'caption='[[2x7w]], [[Resolution|resolution]] 2.36Å' scene=''> | ||
== Structural highlights == | == Structural highlights == | ||
<table><tr><td colspan='2'>[[2x7w]] is a 1 chain structure with sequence from [ | <table><tr><td colspan='2'>[[2x7w]] is a 1 chain structure with sequence from [https://en.wikipedia.org/wiki/Thermotoga_maritima_MSB8 Thermotoga maritima MSB8]. Full crystallographic information is available from [http://oca.weizmann.ac.il/oca-bin/ocashort?id=2X7W OCA]. For a <b>guided tour on the structure components</b> use [https://proteopedia.org/fgij/fg.htm?mol=2X7W FirstGlance]. <br> | ||
</ | </td></tr><tr id='method'><td class="sblockLbl"><b>[[Empirical_models|Method:]]</b></td><td class="sblockDat" id="methodDat">X-ray diffraction, [[Resolution|Resolution]] 2.36Å</td></tr> | ||
<tr id='ligand'><td class="sblockLbl"><b>[[Ligand|Ligands:]]</b></td><td class="sblockDat" id="ligandDat"><scene name='pdbligand=BCN:BICINE'>BCN</scene>, <scene name='pdbligand=CD:CADMIUM+ION'>CD</scene>, <scene name='pdbligand=ZN:ZINC+ION'>ZN</scene></td></tr> | |||
<tr><td class="sblockLbl"><b> | <tr id='resources'><td class="sblockLbl"><b>Resources:</b></td><td class="sblockDat"><span class='plainlinks'>[https://proteopedia.org/fgij/fg.htm?mol=2x7w FirstGlance], [http://oca.weizmann.ac.il/oca-bin/ocaids?id=2x7w OCA], [https://pdbe.org/2x7w PDBe], [https://www.rcsb.org/pdb/explore.do?structureId=2x7w RCSB], [https://www.ebi.ac.uk/pdbsum/2x7w PDBsum], [https://prosat.h-its.org/prosat/prosatexe?pdbcode=2x7w ProSAT]</span></td></tr> | ||
<tr><td class="sblockLbl"><b>Resources:</b></td><td class="sblockDat"><span class='plainlinks'>[ | </table> | ||
<table> | == Function == | ||
[https://www.uniprot.org/uniprot/END4_THEMA END4_THEMA] Endonuclease IV plays a role in DNA repair. It cleaves phosphodiester bonds at apurinic or apyrimidinic sites (AP sites) to produce new 5'-ends that are base-free deoxyribose 5-phosphate residues. It preferentially attacks modified AP sites created by bleomycin and neocarzinostatin (By similarity). | |||
== Evolutionary Conservation == | == Evolutionary Conservation == | ||
[[Image:Consurf_key_small.gif|200px|right]] | [[Image:Consurf_key_small.gif|200px|right]] | ||
Check<jmol> | Check<jmol> | ||
<jmolCheckbox> | <jmolCheckbox> | ||
<scriptWhenChecked>select protein; define ~consurf_to_do selected; consurf_initial_scene = true; script "/wiki/ConSurf/x7/2x7w_consurf.spt"</scriptWhenChecked> | <scriptWhenChecked>; select protein; define ~consurf_to_do selected; consurf_initial_scene = true; script "/wiki/ConSurf/x7/2x7w_consurf.spt"</scriptWhenChecked> | ||
<scriptWhenUnchecked>script /wiki/extensions/Proteopedia/spt/initialview01.spt</scriptWhenUnchecked> | <scriptWhenUnchecked>script /wiki/extensions/Proteopedia/spt/initialview01.spt</scriptWhenUnchecked> | ||
<text>to colour the structure by Evolutionary Conservation</text> | <text>to colour the structure by Evolutionary Conservation</text> | ||
</jmolCheckbox> | </jmolCheckbox> | ||
</jmol>, as determined by [http://consurfdb.tau.ac.il/ ConSurfDB]. You may read the [[Conservation%2C_Evolutionary|explanation]] of the method and the full data available from [http://bental.tau.ac.il/new_ConSurfDB/ | </jmol>, as determined by [http://consurfdb.tau.ac.il/ ConSurfDB]. You may read the [[Conservation%2C_Evolutionary|explanation]] of the method and the full data available from [http://bental.tau.ac.il/new_ConSurfDB/main_output.php?pdb_ID=2x7w ConSurf]. | ||
<div style="clear:both"></div> | <div style="clear:both"></div> | ||
<div style="background-color:#fffaf0;"> | <div style="background-color:#fffaf0;"> | ||
Line 24: | Line 26: | ||
Structure of the endonuclease IV homologue from Thermotoga maritima in the presence of active-site divalent metal ions.,Tomanicek SJ, Hughes RC, Ng JD, Coates L Acta Crystallogr Sect F Struct Biol Cryst Commun. 2010 Sep 1;66(Pt, 9):1003-12. Epub 2010 Aug 21. PMID:20823514<ref>PMID:20823514</ref> | Structure of the endonuclease IV homologue from Thermotoga maritima in the presence of active-site divalent metal ions.,Tomanicek SJ, Hughes RC, Ng JD, Coates L Acta Crystallogr Sect F Struct Biol Cryst Commun. 2010 Sep 1;66(Pt, 9):1003-12. Epub 2010 Aug 21. PMID:20823514<ref>PMID:20823514</ref> | ||
From | From MEDLINE®/PubMed®, a database of the U.S. National Library of Medicine.<br> | ||
</div> | </div> | ||
<div class="pdbe-citations 2x7w" style="background-color:#fffaf0;"></div> | |||
==See Also== | |||
*[[Endonuclease 3D structures|Endonuclease 3D structures]] | |||
== References == | == References == | ||
<references/> | <references/> | ||
__TOC__ | __TOC__ | ||
</StructureSection> | </StructureSection> | ||
[[Category: Thermotoga maritima | [[Category: Large Structures]] | ||
[[Category: Coates | [[Category: Thermotoga maritima MSB8]] | ||
[[Category: Hughes | [[Category: Coates L]] | ||
[[Category: Ng | [[Category: Hughes RC]] | ||
[[Category: Tomanicek | [[Category: Ng JD]] | ||
[[Category: Tomanicek SJ]] | |||
Latest revision as of 13:25, 20 December 2023
Crystal structure of Thermotoga maritima endonuclease IV in the presence of cadmium and zincCrystal structure of Thermotoga maritima endonuclease IV in the presence of cadmium and zinc
Structural highlights
FunctionEND4_THEMA Endonuclease IV plays a role in DNA repair. It cleaves phosphodiester bonds at apurinic or apyrimidinic sites (AP sites) to produce new 5'-ends that are base-free deoxyribose 5-phosphate residues. It preferentially attacks modified AP sites created by bleomycin and neocarzinostatin (By similarity). Evolutionary Conservation![]() Check, as determined by ConSurfDB. You may read the explanation of the method and the full data available from ConSurf. Publication Abstract from PubMedThe most frequent lesion in DNA is at apurinic/apyrimidinic (AP) sites resulting from DNA-base losses. These AP-site lesions can stall DNA replication and lead to genome instability if left unrepaired. The AP endonucleases are an important class of enzymes that are involved in the repair of AP-site intermediates during damage-general DNA base-excision repair pathways. These enzymes hydrolytically cleave the 5'-phosphodiester bond at an AP site to generate a free 3'-hydroxyl group and a 5'-terminal sugar phosphate using their AP nuclease activity. Specifically, Thermotoga maritima endonuclease IV is a member of the second conserved AP endonuclease family that includes Escherichia coli endonuclease IV, which is the archetype of the AP endonuclease superfamily. In order to more fully characterize the AP endonuclease family of enzymes, two X-ray crystal structures of the T. maritima endonuclease IV homologue were determined in the presence of divalent metal ions bound in the active-site region. These structures of the T. maritima endonuclease IV homologue further revealed the use of the TIM-barrel fold and the trinuclear metal binding site as important highly conserved structural elements that are involved in DNA-binding and AP-site repair processes in the AP endonuclease superfamily. Structure of the endonuclease IV homologue from Thermotoga maritima in the presence of active-site divalent metal ions.,Tomanicek SJ, Hughes RC, Ng JD, Coates L Acta Crystallogr Sect F Struct Biol Cryst Commun. 2010 Sep 1;66(Pt, 9):1003-12. Epub 2010 Aug 21. PMID:20823514[1] From MEDLINE®/PubMed®, a database of the U.S. National Library of Medicine. See AlsoReferences
|
|