2x0b: Difference between revisions
No edit summary |
No edit summary |
||
(10 intermediate revisions by the same user not shown) | |||
Line 1: | Line 1: | ||
< | ==Crystal structure of human angiotensinogen complexed with renin== | ||
<StructureSection load='2x0b' size='340' side='right'caption='[[2x0b]], [[Resolution|resolution]] 4.33Å' scene=''> | |||
== Structural highlights == | |||
<table><tr><td colspan='2'>[[2x0b]] is a 8 chain structure with sequence from [https://en.wikipedia.org/wiki/Homo_sapiens Homo sapiens]. Full crystallographic information is available from [http://oca.weizmann.ac.il/oca-bin/ocashort?id=2X0B OCA]. For a <b>guided tour on the structure components</b> use [https://proteopedia.org/fgij/fg.htm?mol=2X0B FirstGlance]. <br> | |||
</td></tr><tr id='method'><td class="sblockLbl"><b>[[Empirical_models|Method:]]</b></td><td class="sblockDat" id="methodDat">X-ray diffraction, [[Resolution|Resolution]] 4.33Å</td></tr> | |||
- | <tr id='resources'><td class="sblockLbl"><b>Resources:</b></td><td class="sblockDat"><span class='plainlinks'>[https://proteopedia.org/fgij/fg.htm?mol=2x0b FirstGlance], [http://oca.weizmann.ac.il/oca-bin/ocaids?id=2x0b OCA], [https://pdbe.org/2x0b PDBe], [https://www.rcsb.org/pdb/explore.do?structureId=2x0b RCSB], [https://www.ebi.ac.uk/pdbsum/2x0b PDBsum], [https://prosat.h-its.org/prosat/prosatexe?pdbcode=2x0b ProSAT]</span></td></tr> | ||
</table> | |||
== Disease == | |||
[https://www.uniprot.org/uniprot/RENI_HUMAN RENI_HUMAN] Defects in REN are a cause of renal tubular dysgenesis (RTD) [MIM:[https://omim.org/entry/267430 267430]. RTD is an autosomal recessive severe disorder of renal tubular development characterized by persistent fetal anuria and perinatal death, probably due to pulmonary hypoplasia from early-onset oligohydramnios (the Potter phenotype).<ref>PMID:16116425</ref> Defects in REN are the cause of familial juvenile hyperuricemic nephropathy type 2 (HNFJ2) [MIM:[https://omim.org/entry/613092 613092]. It is a renal disease characterized by juvenile onset of hyperuricemia, slowly progressive renal failure and anemia.<ref>PMID:19664745</ref> | |||
== Function == | |||
[https://www.uniprot.org/uniprot/RENI_HUMAN RENI_HUMAN] Renin is a highly specific endopeptidase, whose only known function is to generate angiotensin I from angiotensinogen in the plasma, initiating a cascade of reactions that produce an elevation of blood pressure and increased sodium retention by the kidney. | |||
<div style="background-color:#fffaf0;"> | |||
== Publication Abstract from PubMed == | |||
Blood pressure is critically controlled by angiotensins, which are vasopressor peptides specifically released by the enzyme renin from the tail of angiotensinogen-a non-inhibitory member of the serpin family of protease inhibitors. Although angiotensinogen has long been regarded as a passive substrate, the crystal structures solved here to 2.1 A resolution show that the angiotensin cleavage site is inaccessibly buried in its amino-terminal tail. The conformational rearrangement that makes this site accessible for proteolysis is revealed in our 4.4 A structure of the complex of human angiotensinogen with renin. The co-ordinated changes involved are seen to be critically linked by a conserved but labile disulphide bridge. Here we show that the reduced unbridged form of angiotensinogen is present in the circulation in a near 40:60 ratio with the oxidized sulphydryl-bridged form, which preferentially interacts with receptor-bound renin. We propose that this redox-responsive transition of angiotensinogen to a form that will more effectively release angiotensin at a cellular level contributes to the modulation of blood pressure. Specifically, we demonstrate the oxidative switch of angiotensinogen to its more active sulphydryl-bridged form in the maternal circulation in pre-eclampsia-the hypertensive crisis of pregnancy that threatens the health and survival of both mother and child. | |||
A redox switch in angiotensinogen modulates angiotensin release.,Zhou A, Carrell RW, Murphy MP, Wei Z, Yan Y, Stanley PL, Stein PE, Pipkin FB, Read RJ Nature. 2010 Oct 6. PMID:20927107<ref>PMID:20927107</ref> | |||
From MEDLINE®/PubMed®, a database of the U.S. National Library of Medicine.<br> | |||
</div> | |||
<div class="pdbe-citations 2x0b" style="background-color:#fffaf0;"></div> | |||
==See Also== | |||
*[[Renin|Renin]] | |||
*[[Serpin 3D structures|Serpin 3D structures]] | |||
== References == | |||
<references/> | |||
__TOC__ | |||
== | </StructureSection> | ||
== | |||
< | |||
[[Category: Homo sapiens]] | [[Category: Homo sapiens]] | ||
[[Category: | [[Category: Large Structures]] | ||
[[Category: Carrell | [[Category: Carrell RW]] | ||
[[Category: Read | [[Category: Read RJ]] | ||
[[Category: Wei | [[Category: Wei Z]] | ||
[[Category: Yan | [[Category: Yan Y]] | ||
[[Category: Zhou | [[Category: Zhou A]] | ||
Latest revision as of 13:21, 20 December 2023
Crystal structure of human angiotensinogen complexed with reninCrystal structure of human angiotensinogen complexed with renin
Structural highlights
DiseaseRENI_HUMAN Defects in REN are a cause of renal tubular dysgenesis (RTD) [MIM:267430. RTD is an autosomal recessive severe disorder of renal tubular development characterized by persistent fetal anuria and perinatal death, probably due to pulmonary hypoplasia from early-onset oligohydramnios (the Potter phenotype).[1] Defects in REN are the cause of familial juvenile hyperuricemic nephropathy type 2 (HNFJ2) [MIM:613092. It is a renal disease characterized by juvenile onset of hyperuricemia, slowly progressive renal failure and anemia.[2] FunctionRENI_HUMAN Renin is a highly specific endopeptidase, whose only known function is to generate angiotensin I from angiotensinogen in the plasma, initiating a cascade of reactions that produce an elevation of blood pressure and increased sodium retention by the kidney. Publication Abstract from PubMedBlood pressure is critically controlled by angiotensins, which are vasopressor peptides specifically released by the enzyme renin from the tail of angiotensinogen-a non-inhibitory member of the serpin family of protease inhibitors. Although angiotensinogen has long been regarded as a passive substrate, the crystal structures solved here to 2.1 A resolution show that the angiotensin cleavage site is inaccessibly buried in its amino-terminal tail. The conformational rearrangement that makes this site accessible for proteolysis is revealed in our 4.4 A structure of the complex of human angiotensinogen with renin. The co-ordinated changes involved are seen to be critically linked by a conserved but labile disulphide bridge. Here we show that the reduced unbridged form of angiotensinogen is present in the circulation in a near 40:60 ratio with the oxidized sulphydryl-bridged form, which preferentially interacts with receptor-bound renin. We propose that this redox-responsive transition of angiotensinogen to a form that will more effectively release angiotensin at a cellular level contributes to the modulation of blood pressure. Specifically, we demonstrate the oxidative switch of angiotensinogen to its more active sulphydryl-bridged form in the maternal circulation in pre-eclampsia-the hypertensive crisis of pregnancy that threatens the health and survival of both mother and child. A redox switch in angiotensinogen modulates angiotensin release.,Zhou A, Carrell RW, Murphy MP, Wei Z, Yan Y, Stanley PL, Stein PE, Pipkin FB, Read RJ Nature. 2010 Oct 6. PMID:20927107[3] From MEDLINE®/PubMed®, a database of the U.S. National Library of Medicine. See AlsoReferences
|
|