2woo: Difference between revisions

From Proteopedia
Jump to navigation Jump to search
No edit summary
No edit summary
 
Line 3: Line 3:
<StructureSection load='2woo' size='340' side='right'caption='[[2woo]], [[Resolution|resolution]] 3.01&Aring;' scene=''>
<StructureSection load='2woo' size='340' side='right'caption='[[2woo]], [[Resolution|resolution]] 3.01&Aring;' scene=''>
== Structural highlights ==
== Structural highlights ==
<table><tr><td colspan='2'>[[2woo]] is a 6 chain structure with sequence from [https://en.wikipedia.org/wiki/Cbs_356 Cbs 356]. Full crystallographic information is available from [http://oca.weizmann.ac.il/oca-bin/ocashort?id=2WOO OCA]. For a <b>guided tour on the structure components</b> use [https://proteopedia.org/fgij/fg.htm?mol=2WOO FirstGlance]. <br>
<table><tr><td colspan='2'>[[2woo]] is a 6 chain structure with sequence from [https://en.wikipedia.org/wiki/Schizosaccharomyces_pombe Schizosaccharomyces pombe]. Full crystallographic information is available from [http://oca.weizmann.ac.il/oca-bin/ocashort?id=2WOO OCA]. For a <b>guided tour on the structure components</b> use [https://proteopedia.org/fgij/fg.htm?mol=2WOO FirstGlance]. <br>
</td></tr><tr id='ligand'><td class="sblockLbl"><b>[[Ligand|Ligands:]]</b></td><td class="sblockDat" id="ligandDat"><scene name='pdbligand=ZN:ZINC+ION'>ZN</scene></td></tr>
</td></tr><tr id='method'><td class="sblockLbl"><b>[[Empirical_models|Method:]]</b></td><td class="sblockDat" id="methodDat">X-ray diffraction, [[Resolution|Resolution]] 3.006&#8491;</td></tr>
<tr id='activity'><td class="sblockLbl"><b>Activity:</b></td><td class="sblockDat"><span class='plainlinks'>[https://en.wikipedia.org/wiki/Arsenite-transporting_ATPase Arsenite-transporting ATPase], with EC number [https://www.brenda-enzymes.info/php/result_flat.php4?ecno=3.6.3.16 3.6.3.16] </span></td></tr>
<tr id='ligand'><td class="sblockLbl"><b>[[Ligand|Ligands:]]</b></td><td class="sblockDat" id="ligandDat"><scene name='pdbligand=ZN:ZINC+ION'>ZN</scene></td></tr>
<tr id='resources'><td class="sblockLbl"><b>Resources:</b></td><td class="sblockDat"><span class='plainlinks'>[https://proteopedia.org/fgij/fg.htm?mol=2woo FirstGlance], [http://oca.weizmann.ac.il/oca-bin/ocaids?id=2woo OCA], [https://pdbe.org/2woo PDBe], [https://www.rcsb.org/pdb/explore.do?structureId=2woo RCSB], [https://www.ebi.ac.uk/pdbsum/2woo PDBsum], [https://prosat.h-its.org/prosat/prosatexe?pdbcode=2woo ProSAT]</span></td></tr>
<tr id='resources'><td class="sblockLbl"><b>Resources:</b></td><td class="sblockDat"><span class='plainlinks'>[https://proteopedia.org/fgij/fg.htm?mol=2woo FirstGlance], [http://oca.weizmann.ac.il/oca-bin/ocaids?id=2woo OCA], [https://pdbe.org/2woo PDBe], [https://www.rcsb.org/pdb/explore.do?structureId=2woo RCSB], [https://www.ebi.ac.uk/pdbsum/2woo PDBsum], [https://prosat.h-its.org/prosat/prosatexe?pdbcode=2woo ProSAT]</span></td></tr>
</table>
</table>
== Function ==
== Function ==
[[https://www.uniprot.org/uniprot/GET3_SCHPO GET3_SCHPO]] ATPase required for the post-translational delivery of tail-anchored (TA) proteins to the endoplasmic reticulum. Recognizes and selectively binds the transmembrane domain of TA proteins in the cytosol. This complex then targets to the endoplasmic reticulum by membrane-bound receptors, where the tail-anchored protein is released for insertion. This process is regulated by ATP binding and hydrolysis. ATP binding drives the homodimer towards the closed dimer state, facilitating recognition of newly synthesized TA membrane proteins. ATP hydrolysis is required for insertion. Subsequently, the homodimer reverts towards the open dimer state, lowering its affinity for the membrane-bound receptor, and returning it to the cytosol to initiate a new round of targeting (By similarity).[HAMAP-Rule:MF_03112]  
[https://www.uniprot.org/uniprot/GET3_SCHPO GET3_SCHPO] ATPase required for the post-translational delivery of tail-anchored (TA) proteins to the endoplasmic reticulum. Recognizes and selectively binds the transmembrane domain of TA proteins in the cytosol. This complex then targets to the endoplasmic reticulum by membrane-bound receptors, where the tail-anchored protein is released for insertion. This process is regulated by ATP binding and hydrolysis. ATP binding drives the homodimer towards the closed dimer state, facilitating recognition of newly synthesized TA membrane proteins. ATP hydrolysis is required for insertion. Subsequently, the homodimer reverts towards the open dimer state, lowering its affinity for the membrane-bound receptor, and returning it to the cytosol to initiate a new round of targeting (By similarity).[HAMAP-Rule:MF_03112]
== Evolutionary Conservation ==
== Evolutionary Conservation ==
[[Image:Consurf_key_small.gif|200px|right]]
[[Image:Consurf_key_small.gif|200px|right]]
Line 33: Line 33:
__TOC__
__TOC__
</StructureSection>
</StructureSection>
[[Category: Arsenite-transporting ATPase]]
[[Category: Cbs 356]]
[[Category: Large Structures]]
[[Category: Large Structures]]
[[Category: Dobosz, M]]
[[Category: Schizosaccharomyces pombe]]
[[Category: Downing, M E]]
[[Category: Dobosz M]]
[[Category: Hegde, R S]]
[[Category: Downing ME]]
[[Category: Keenan, R J]]
[[Category: Hegde RS]]
[[Category: Mariappan, M]]
[[Category: Keenan RJ]]
[[Category: Mateja, A]]
[[Category: Mariappan M]]
[[Category: Szlachcic, A]]
[[Category: Mateja A]]
[[Category: Arsa]]
[[Category: Szlachcic A]]
[[Category: Arsenical resistance]]
[[Category: Arsenite]]
[[Category: Atp-binding]]
[[Category: Atpase]]
[[Category: Cytoplasm]]
[[Category: Endoplasmic reticulum]]
[[Category: Er-golgi transport]]
[[Category: Get3]]
[[Category: Golgi apparatus]]
[[Category: Hydrolase]]
[[Category: Membrane protein]]
[[Category: Nucleotide-binding]]
[[Category: Nucleus]]
[[Category: Tail-anchored]]
[[Category: Targeting factor]]
[[Category: Transport]]
[[Category: Trc40]]

Latest revision as of 13:12, 20 December 2023

Nucleotide-free form of S. pombe Get3Nucleotide-free form of S. pombe Get3

Structural highlights

2woo is a 6 chain structure with sequence from Schizosaccharomyces pombe. Full crystallographic information is available from OCA. For a guided tour on the structure components use FirstGlance.
Method:X-ray diffraction, Resolution 3.006Å
Ligands:
Resources:FirstGlance, OCA, PDBe, RCSB, PDBsum, ProSAT

Function

GET3_SCHPO ATPase required for the post-translational delivery of tail-anchored (TA) proteins to the endoplasmic reticulum. Recognizes and selectively binds the transmembrane domain of TA proteins in the cytosol. This complex then targets to the endoplasmic reticulum by membrane-bound receptors, where the tail-anchored protein is released for insertion. This process is regulated by ATP binding and hydrolysis. ATP binding drives the homodimer towards the closed dimer state, facilitating recognition of newly synthesized TA membrane proteins. ATP hydrolysis is required for insertion. Subsequently, the homodimer reverts towards the open dimer state, lowering its affinity for the membrane-bound receptor, and returning it to the cytosol to initiate a new round of targeting (By similarity).[HAMAP-Rule:MF_03112]

Evolutionary Conservation

Check, as determined by ConSurfDB. You may read the explanation of the method and the full data available from ConSurf.

Publication Abstract from PubMed

Targeting of newly synthesized membrane proteins to the endoplasmic reticulum is an essential cellular process. Most membrane proteins are recognized and targeted co-translationally by the signal recognition particle. However, nearly 5% of membrane proteins are 'tail-anchored' by a single carboxy-terminal transmembrane domain that cannot access the co-translational pathway. Instead, tail-anchored proteins are targeted post-translationally by a conserved ATPase termed Get3. The mechanistic basis for tail-anchored protein recognition or targeting by Get3 is not known. Here we present crystal structures of yeast Get3 in 'open' (nucleotide-free) and 'closed' (ADP.AlF(4)(-)-bound) dimer states. In the closed state, the dimer interface of Get3 contains an enormous hydrophobic groove implicated by mutational analyses in tail-anchored protein binding. In the open state, Get3 undergoes a striking rearrangement that disrupts the groove and shields its hydrophobic surfaces. These data provide a molecular mechanism for nucleotide-regulated binding and release of tail-anchored proteins during their membrane targeting by Get3.

The structural basis of tail-anchored membrane protein recognition by Get3.,Mateja A, Szlachcic A, Downing ME, Dobosz M, Mariappan M, Hegde RS, Keenan RJ Nature. 2009 Sep 17;461(7262):361-6. Epub 2009 Aug 12. PMID:19675567[1]

From MEDLINE®/PubMed®, a database of the U.S. National Library of Medicine.

References

  1. Mateja A, Szlachcic A, Downing ME, Dobosz M, Mariappan M, Hegde RS, Keenan RJ. The structural basis of tail-anchored membrane protein recognition by Get3. Nature. 2009 Sep 17;461(7262):361-6. Epub 2009 Aug 12. PMID:19675567 doi:10.1038/nature08319

2woo, resolution 3.01Å

Drag the structure with the mouse to rotate

Proteopedia Page Contributors and Editors (what is this?)Proteopedia Page Contributors and Editors (what is this?)

OCA