2jpp: Difference between revisions

From Proteopedia
Jump to navigation Jump to search
No edit summary
No edit summary
 
(13 intermediate revisions by the same user not shown)
Line 1: Line 1:
[[Image:2jpp.gif|left|200px]]


{{Structure
==Structural basis of RsmA/CsrA RNA recognition: Structure of RsmE bound to the Shine-Dalgarno sequence of hcnA mRNA==
|PDB= 2jpp |SIZE=350|CAPTION= <scene name='initialview01'>2jpp</scene>
<StructureSection load='2jpp' size='340' side='right'caption='[[2jpp]]' scene=''>
|SITE=  
== Structural highlights ==
|LIGAND=  
<table><tr><td colspan='2'>[[2jpp]] is a 4 chain structure with sequence from [https://en.wikipedia.org/wiki/Pseudomonas_fluorescens Pseudomonas fluorescens]. Full experimental information is available from [http://oca.weizmann.ac.il/oca-bin/ocashort?id=2JPP OCA]. For a <b>guided tour on the structure components</b> use [https://proteopedia.org/fgij/fg.htm?mol=2JPP FirstGlance]. <br>
|ACTIVITY=  
</td></tr><tr id='method'><td class="sblockLbl"><b>[[Empirical_models|Method:]]</b></td><td class="sblockDat" id="methodDat">Solution NMR</td></tr>
|GENE= rsmE ([http://www.ncbi.nlm.nih.gov/Taxonomy/Browser/wwwtax.cgi?mode=Info&srchmode=5&id=294 Pseudomonas fluorescens])
<tr id='resources'><td class="sblockLbl"><b>Resources:</b></td><td class="sblockDat"><span class='plainlinks'>[https://proteopedia.org/fgij/fg.htm?mol=2jpp FirstGlance], [http://oca.weizmann.ac.il/oca-bin/ocaids?id=2jpp OCA], [https://pdbe.org/2jpp PDBe], [https://www.rcsb.org/pdb/explore.do?structureId=2jpp RCSB], [https://www.ebi.ac.uk/pdbsum/2jpp PDBsum], [https://prosat.h-its.org/prosat/prosatexe?pdbcode=2jpp ProSAT]</span></td></tr>
}}
</table>
 
== Function ==
'''Structural basis of RsmA/CsrA RNA recognition: Structure of RsmE bound to the Shine-Dalgarno sequence of hcnA mRNA'''
[https://www.uniprot.org/uniprot/CSRA1_PSEPH CSRA1_PSEPH] A translational regulator that binds mRNA to regulate translation initiation and/or mRNA stability (PubMed:17704818, PubMed:23635605). Post-transcriptionally represses the expression of genes controlled by GacA/GacS (PubMed:15601712, PubMed:23635605). Binds the 5' UTR of mRNA; the mRNA binds to the outside edge to each monomer and each dimer could bind the same mRNA twice (PubMed:17704818). Recognizes a (A/U)CANGGANG(U/A) consensus, binds to GGA (part of the Shine-Dalgarno sequence) in the 5' UTR loop, which prevents ribosome binding (PubMed:17704818, PubMed:24561806, PubMed:23635605). Overexpression represses target protein expression; mutating nucleotides in the 5' UTR abolishes repression in vivo (PubMed:17704818, PubMed:23635605). Binds specifically to small RNAs (sRNA) RsmX, RsmZ and RsmY; these sRNAs fold into secondary structures with multiple GGA sequences in loops to which the CsrA proteins bind (PubMed:15601712, PubMed:16286659, PubMed:24828038). Binding to RsmX, RsmY or RsmZ titrates the protein so that it can no longer bind mRNA and repress translation (PubMed:15601712, PubMed:24828038). RsmZ can bind up to 5 CsrA1 (rsmE) dimers; they bind cooperatively to GGA sequences in RsmZ in a defined order (PubMed:24828038, PubMed:24561806). Required for optimal expression and stability of sRNAs RsmX, RsmY and RsmZ (PubMed:15601712, PubMed:16286659). Four CsrA1 dimers maximally protect RsmZ from RNase activity (PubMed:24828038). Deletion of rsmX, rsmY or rsmZ alone has no detectable phenotype, but a double rsmY-rsmZ deletion has a marked decrease in production of secondary metabolites HCN, exoprotease AprA, antifungal agent 2,4-diacetylphloroglucinol and swarming motility, and protects cucumber plants from fungal infection less well than wild-type; the triple sRNA deletion has even stronger loss of these phenotypes (PubMed:16286659).<ref>PMID:15601712</ref> <ref>PMID:16286659</ref> <ref>PMID:17704818</ref> <ref>PMID:23635605</ref> <ref>PMID:24561806</ref> <ref>PMID:24828038</ref>
 
== Evolutionary Conservation ==
 
[[Image:Consurf_key_small.gif|200px|right]]
==Overview==
Check<jmol>
  <jmolCheckbox>
    <scriptWhenChecked>; select protein; define ~consurf_to_do selected; consurf_initial_scene = true; script "/wiki/ConSurf/jp/2jpp_consurf.spt"</scriptWhenChecked>
    <scriptWhenUnchecked>script /wiki/extensions/Proteopedia/spt/initialview01.spt</scriptWhenUnchecked>
    <text>to colour the structure by Evolutionary Conservation</text>
  </jmolCheckbox>
</jmol>, as determined by [http://consurfdb.tau.ac.il/ ConSurfDB]. You may read the [[Conservation%2C_Evolutionary|explanation]] of the method and the full data available from [http://bental.tau.ac.il/new_ConSurfDB/main_output.php?pdb_ID=2jpp ConSurf].
<div style="clear:both"></div>
<div style="background-color:#fffaf0;">
== Publication Abstract from PubMed ==
Proteins of the RsmA/CsrA family are global translational regulators in many bacterial species. We have determined the solution structure of a complex formed between the RsmE protein, a member of this family from Pseudomonas fluorescens, and a target RNA encompassing the ribosome-binding site of the hcnA gene. The RsmE homodimer with its two RNA-binding sites makes optimal contact with an 5'-A/UCANGGANGU/A-3' sequence in the mRNA. When tightly gripped by RsmE, the ANGGAN core folds into a loop, favoring the formation of a 3-base-pair stem by flanking nucleotides. We validated these findings by in vivo and in vitro mutational analyses. The structure of the complex explains well how, by sequestering the Shine-Dalgarno sequence, the RsmA/CsrA proteins repress translation.
Proteins of the RsmA/CsrA family are global translational regulators in many bacterial species. We have determined the solution structure of a complex formed between the RsmE protein, a member of this family from Pseudomonas fluorescens, and a target RNA encompassing the ribosome-binding site of the hcnA gene. The RsmE homodimer with its two RNA-binding sites makes optimal contact with an 5'-A/UCANGGANGU/A-3' sequence in the mRNA. When tightly gripped by RsmE, the ANGGAN core folds into a loop, favoring the formation of a 3-base-pair stem by flanking nucleotides. We validated these findings by in vivo and in vitro mutational analyses. The structure of the complex explains well how, by sequestering the Shine-Dalgarno sequence, the RsmA/CsrA proteins repress translation.


==About this Structure==
Molecular basis of messenger RNA recognition by the specific bacterial repressing clamp RsmA/CsrA.,Schubert M, Lapouge K, Duss O, Oberstrass FC, Jelesarov I, Haas D, Allain FH Nat Struct Mol Biol. 2007 Sep;14(9):807-13. Epub 2007 Aug 19. PMID:17704818<ref>PMID:17704818</ref>
2JPP is a [[Single protein]] structure of sequence from [http://en.wikipedia.org/wiki/Pseudomonas_fluorescens Pseudomonas fluorescens]. Full crystallographic information is available from [http://oca.weizmann.ac.il/oca-bin/ocashort?id=2JPP OCA].


==Reference==
From MEDLINE&reg;/PubMed&reg;, a database of the U.S. National Library of Medicine.<br>
Molecular basis of messenger RNA recognition by the specific bacterial repressing clamp RsmA/CsrA., Schubert M, Lapouge K, Duss O, Oberstrass FC, Jelesarov I, Haas D, Allain FH, Nat Struct Mol Biol. 2007 Sep;14(9):807-13. Epub 2007 Aug 19. PMID:[http://www.ncbi.nlm.nih.gov/pubmed/17704818 17704818]
</div>
<div class="pdbe-citations 2jpp" style="background-color:#fffaf0;"></div>
== References ==
<references/>
__TOC__
</StructureSection>
[[Category: Large Structures]]
[[Category: Pseudomonas fluorescens]]
[[Category: Pseudomonas fluorescens]]
[[Category: Single protein]]
[[Category: Allain FH-T]]
[[Category: Allain, F H.T.]]
[[Category: Duss O]]
[[Category: Duss, O.]]
[[Category: Haas D]]
[[Category: Haas, D.]]
[[Category: Jelesarov I]]
[[Category: Jelesarov, I.]]
[[Category: Lapouge K]]
[[Category: Lapouge, K.]]
[[Category: Oberstrass FC]]
[[Category: Oberstrass, F C.]]
[[Category: Schubert M]]
[[Category: Schubert, M.]]
[[Category: csra]]
[[Category: protein/rna]]
[[Category: rna recognition]]
[[Category: rsma]]
[[Category: shine-dalgarno]]
[[Category: translation/rna complex]]
 
''Page seeded by [http://oca.weizmann.ac.il/oca OCA ] on Thu Mar 20 17:44:01 2008''

Latest revision as of 13:10, 20 December 2023

Structural basis of RsmA/CsrA RNA recognition: Structure of RsmE bound to the Shine-Dalgarno sequence of hcnA mRNAStructural basis of RsmA/CsrA RNA recognition: Structure of RsmE bound to the Shine-Dalgarno sequence of hcnA mRNA

Structural highlights

2jpp is a 4 chain structure with sequence from Pseudomonas fluorescens. Full experimental information is available from OCA. For a guided tour on the structure components use FirstGlance.
Method:Solution NMR
Resources:FirstGlance, OCA, PDBe, RCSB, PDBsum, ProSAT

Function

CSRA1_PSEPH A translational regulator that binds mRNA to regulate translation initiation and/or mRNA stability (PubMed:17704818, PubMed:23635605). Post-transcriptionally represses the expression of genes controlled by GacA/GacS (PubMed:15601712, PubMed:23635605). Binds the 5' UTR of mRNA; the mRNA binds to the outside edge to each monomer and each dimer could bind the same mRNA twice (PubMed:17704818). Recognizes a (A/U)CANGGANG(U/A) consensus, binds to GGA (part of the Shine-Dalgarno sequence) in the 5' UTR loop, which prevents ribosome binding (PubMed:17704818, PubMed:24561806, PubMed:23635605). Overexpression represses target protein expression; mutating nucleotides in the 5' UTR abolishes repression in vivo (PubMed:17704818, PubMed:23635605). Binds specifically to small RNAs (sRNA) RsmX, RsmZ and RsmY; these sRNAs fold into secondary structures with multiple GGA sequences in loops to which the CsrA proteins bind (PubMed:15601712, PubMed:16286659, PubMed:24828038). Binding to RsmX, RsmY or RsmZ titrates the protein so that it can no longer bind mRNA and repress translation (PubMed:15601712, PubMed:24828038). RsmZ can bind up to 5 CsrA1 (rsmE) dimers; they bind cooperatively to GGA sequences in RsmZ in a defined order (PubMed:24828038, PubMed:24561806). Required for optimal expression and stability of sRNAs RsmX, RsmY and RsmZ (PubMed:15601712, PubMed:16286659). Four CsrA1 dimers maximally protect RsmZ from RNase activity (PubMed:24828038). Deletion of rsmX, rsmY or rsmZ alone has no detectable phenotype, but a double rsmY-rsmZ deletion has a marked decrease in production of secondary metabolites HCN, exoprotease AprA, antifungal agent 2,4-diacetylphloroglucinol and swarming motility, and protects cucumber plants from fungal infection less well than wild-type; the triple sRNA deletion has even stronger loss of these phenotypes (PubMed:16286659).[1] [2] [3] [4] [5] [6]

Evolutionary Conservation

Check, as determined by ConSurfDB. You may read the explanation of the method and the full data available from ConSurf.

Publication Abstract from PubMed

Proteins of the RsmA/CsrA family are global translational regulators in many bacterial species. We have determined the solution structure of a complex formed between the RsmE protein, a member of this family from Pseudomonas fluorescens, and a target RNA encompassing the ribosome-binding site of the hcnA gene. The RsmE homodimer with its two RNA-binding sites makes optimal contact with an 5'-A/UCANGGANGU/A-3' sequence in the mRNA. When tightly gripped by RsmE, the ANGGAN core folds into a loop, favoring the formation of a 3-base-pair stem by flanking nucleotides. We validated these findings by in vivo and in vitro mutational analyses. The structure of the complex explains well how, by sequestering the Shine-Dalgarno sequence, the RsmA/CsrA proteins repress translation.

Molecular basis of messenger RNA recognition by the specific bacterial repressing clamp RsmA/CsrA.,Schubert M, Lapouge K, Duss O, Oberstrass FC, Jelesarov I, Haas D, Allain FH Nat Struct Mol Biol. 2007 Sep;14(9):807-13. Epub 2007 Aug 19. PMID:17704818[7]

From MEDLINE®/PubMed®, a database of the U.S. National Library of Medicine.

References

  1. Reimmann C, Valverde C, Kay E, Haas D. Posttranscriptional repression of GacS/GacA-controlled genes by the RNA-binding protein RsmE acting together with RsmA in the biocontrol strain Pseudomonas fluorescens CHA0. J Bacteriol. 2005 Jan;187(1):276-85. PMID:15601712 doi:10.1128/JB.187.1.276-285.2005
  2. Kay E, Dubuis C, Haas D. Three small RNAs jointly ensure secondary metabolism and biocontrol in Pseudomonas fluorescens CHA0. Proc Natl Acad Sci U S A. 2005 Nov 22;102(47):17136-41. PMID:16286659 doi:10.1073/pnas.0505673102
  3. Schubert M, Lapouge K, Duss O, Oberstrass FC, Jelesarov I, Haas D, Allain FH. Molecular basis of messenger RNA recognition by the specific bacterial repressing clamp RsmA/CsrA. Nat Struct Mol Biol. 2007 Sep;14(9):807-13. Epub 2007 Aug 19. PMID:17704818 doi:10.1038/nsmb1285
  4. Lapouge K, Perozzo R, Iwaszkiewicz J, Bertelli C, Zoete V, Michielin O, Scapozza L, Haas D. RNA pentaloop structures as effective targets of regulators belonging to the RsmA/CsrA protein family. RNA Biol. 2013 Jun;10(6):1031-41. PMID:23635605 doi:10.4161/rna.24771
  5. Duss O, Michel E, Diarra Dit Konte N, Schubert M, Allain FH. Molecular basis for the wide range of affinity found in Csr/Rsm protein-RNA recognition. Nucleic Acids Res. 2014 Feb 21. PMID:24561806 doi:http://dx.doi.org/10.1093/nar/gku141
  6. Duss O, Michel E, Yulikov M, Schubert M, Jeschke G, Allain FH. Structural basis of the non-coding RNA RsmZ acting as a protein sponge. Nature. 2014 May 29;509(7502):588-92. doi: 10.1038/nature13271. Epub 2014 May 14. PMID:24828038 doi:http://dx.doi.org/10.1038/nature13271
  7. Schubert M, Lapouge K, Duss O, Oberstrass FC, Jelesarov I, Haas D, Allain FH. Molecular basis of messenger RNA recognition by the specific bacterial repressing clamp RsmA/CsrA. Nat Struct Mol Biol. 2007 Sep;14(9):807-13. Epub 2007 Aug 19. PMID:17704818 doi:10.1038/nsmb1285
Drag the structure with the mouse to rotate

Proteopedia Page Contributors and Editors (what is this?)Proteopedia Page Contributors and Editors (what is this?)

OCA