2v67: Difference between revisions

No edit summary
No edit summary
 
(11 intermediate revisions by the same user not shown)
Line 1: Line 1:
[[Image:2v67.jpg|left|200px]]
<!--
The line below this paragraph, containing "STRUCTURE_2v67", creates the "Structure Box" on the page.
You may change the PDB parameter (which sets the PDB file loaded into the applet)
or the SCENE parameter (which sets the initial scene displayed when the page is loaded),
or leave the SCENE parameter empty for the default display.
-->
{{STRUCTURE_2v67|  PDB=2v67  |  SCENE=  }}
'''CRYSTAL STRUCTURE OF CHLAMYDOMONAS REINHARDTII RUBISCO WITH A LARGE-SUBUNIT SUPRESSOR MUTATION T342I'''


==Crystal structure of Chlamydomonas reinhardtii Rubisco with a large- subunit supressor mutation T342I==
<StructureSection load='2v67' size='340' side='right'caption='[[2v67]], [[Resolution|resolution]] 2.00&Aring;' scene=''>
== Structural highlights ==
<table><tr><td colspan='2'>[[2v67]] is a 16 chain structure with sequence from [https://en.wikipedia.org/wiki/Chlamydomonas_reinhardtii Chlamydomonas reinhardtii]. Full crystallographic information is available from [http://oca.weizmann.ac.il/oca-bin/ocashort?id=2V67 OCA]. For a <b>guided tour on the structure components</b> use [https://proteopedia.org/fgij/fg.htm?mol=2V67 FirstGlance]. <br>
</td></tr><tr id='method'><td class="sblockLbl"><b>[[Empirical_models|Method:]]</b></td><td class="sblockDat" id="methodDat">X-ray diffraction, [[Resolution|Resolution]] 2&#8491;</td></tr>
<tr id='ligand'><td class="sblockLbl"><b>[[Ligand|Ligands:]]</b></td><td class="sblockDat" id="ligandDat"><scene name='pdbligand=CAP:2-CARBOXYARABINITOL-1,5-DIPHOSPHATE'>CAP</scene>, <scene name='pdbligand=EDO:1,2-ETHANEDIOL'>EDO</scene>, <scene name='pdbligand=HYP:4-HYDROXYPROLINE'>HYP</scene>, <scene name='pdbligand=KCX:LYSINE+NZ-CARBOXYLIC+ACID'>KCX</scene>, <scene name='pdbligand=MG:MAGNESIUM+ION'>MG</scene>, <scene name='pdbligand=MME:N-METHYL+METHIONINE'>MME</scene>, <scene name='pdbligand=SMC:S-METHYLCYSTEINE'>SMC</scene></td></tr>
<tr id='resources'><td class="sblockLbl"><b>Resources:</b></td><td class="sblockDat"><span class='plainlinks'>[https://proteopedia.org/fgij/fg.htm?mol=2v67 FirstGlance], [http://oca.weizmann.ac.il/oca-bin/ocaids?id=2v67 OCA], [https://pdbe.org/2v67 PDBe], [https://www.rcsb.org/pdb/explore.do?structureId=2v67 RCSB], [https://www.ebi.ac.uk/pdbsum/2v67 PDBsum], [https://prosat.h-its.org/prosat/prosatexe?pdbcode=2v67 ProSAT]</span></td></tr>
</table>
== Function ==
[https://www.uniprot.org/uniprot/RBL_CHLRE RBL_CHLRE] RuBisCO catalyzes two reactions: the carboxylation of D-ribulose 1,5-bisphosphate, the primary event in carbon dioxide fixation, as well as the oxidative fragmentation of the pentose substrate in the photorespiration process. Both reactions occur simultaneously and in competition at the same active site.[HAMAP-Rule:MF_01338]
== Evolutionary Conservation ==
[[Image:Consurf_key_small.gif|200px|right]]
Check<jmol>
  <jmolCheckbox>
    <scriptWhenChecked>; select protein; define ~consurf_to_do selected; consurf_initial_scene = true; script "/wiki/ConSurf/v6/2v67_consurf.spt"</scriptWhenChecked>
    <scriptWhenUnchecked>script /wiki/extensions/Proteopedia/spt/initialview01.spt</scriptWhenUnchecked>
    <text>to colour the structure by Evolutionary Conservation</text>
  </jmolCheckbox>
</jmol>, as determined by [http://consurfdb.tau.ac.il/ ConSurfDB]. You may read the [[Conservation%2C_Evolutionary|explanation]] of the method and the full data available from [http://bental.tau.ac.il/new_ConSurfDB/main_output.php?pdb_ID=2v67 ConSurf].
<div style="clear:both"></div>
<div style="background-color:#fffaf0;">
== Publication Abstract from PubMed ==
The loop between alpha-helix 6 and beta-strand 6 in the alpha/beta-barrel of ribulose-1,5-bisphosphate carboxylase/oxygenase plays a key role in discriminating between CO2 and O2. Genetic screening in Chlamydomonas reinhardtii previously identified a loop-6 V331A substitution that decreases carboxylation and CO2/O2 specificity. Revertant selection identified T342I and G344S substitutions that restore photosynthetic growth by increasing carboxylation and specificity of the V331A enzyme. In numerous X-ray crystal structures, loop 6 is closed or open depending on the activation state of the enzyme and the presence or absence of ligands. The carboxy terminus folds over loop 6 in the closed state. To study the molecular basis for catalysis, directed mutagenesis and chloroplast transformation were used to create T342I and G344S substitutions alone. X-ray crystal structures were then solved for the V331A, V331A/T342I, T342I, and V331A/G344S enzymes, as well as for a D473E enzyme created to assess the role of the carboxy terminus in loop-6 closure. V331A disturbs a hydrophobic pocket, abolishing several van der Waals interactions. These changes are complemented by T342I and G344S, both of which alone cause decreases in CO2/O2 specificity. In the V331A/T342I revertant enzyme, Arg339 main-chain atoms are displaced. In V331A/G344S, alpha-helix 6 is shifted. D473E causes disorder of the carboxy terminus, but loop 6 remains closed. Interactions between a transition-state analogue and several residues are altered in the mutant enzymes. However, active-site Lys334 at the apex of loop 6 has a normal conformation. A variety of subtle interactions must be responsible for catalytic efficiency and CO2/O2 specificity.


==Overview==
Structural analysis of altered large-subunit loop-6/carboxy-terminus interactions that influence catalytic efficiency and CO2/O2 specificity of ribulose-1,5-bisphosphate carboxylase/oxygenase.,Karkehabadi S, Satagopan S, Taylor TC, Spreitzer RJ, Andersson I Biochemistry. 2007 Oct 2;46(39):11080-9. Epub 2007 Sep 8. PMID:17824672<ref>PMID:17824672</ref>
The loop between alpha-helix 6 and beta-strand 6 in the alpha/beta-barrel of ribulose-1,5-bisphosphate carboxylase/oxygenase plays a key role in discriminating between CO2 and O2. Genetic screening in Chlamydomonas reinhardtii previously identified a loop-6 V331A substitution that decreases carboxylation and CO2/O2 specificity. Revertant selection identified T342I and G344S substitutions that restore photosynthetic growth by increasing carboxylation and specificity of the V331A enzyme. In numerous X-ray crystal structures, loop 6 is closed or open depending on the activation state of the enzyme and the presence or absence of ligands. The carboxy terminus folds over loop 6 in the closed state. To study the molecular basis for catalysis, directed mutagenesis and chloroplast transformation were used to create T342I and G344S substitutions alone. X-ray crystal structures were then solved for the V331A, V331A/T342I, T342I, and V331A/G344S enzymes, as well as for a D473E enzyme created to assess the role of the carboxy terminus in loop-6 closure. V331A disturbs a hydrophobic pocket, abolishing several van der Waals interactions. These changes are complemented by T342I and G344S, both of which alone cause decreases in CO2/O2 specificity. In the V331A/T342I revertant enzyme, Arg339 main-chain atoms are displaced. In V331A/G344S, alpha-helix 6 is shifted. D473E causes disorder of the carboxy terminus, but loop 6 remains closed. Interactions between a transition-state analogue and several residues are altered in the mutant enzymes. However, active-site Lys334 at the apex of loop 6 has a normal conformation. A variety of subtle interactions must be responsible for catalytic efficiency and CO2/O2 specificity.


==About this Structure==
From MEDLINE&reg;/PubMed&reg;, a database of the U.S. National Library of Medicine.<br>
2V67 is a [[Protein complex]] structure of sequences from [http://en.wikipedia.org/wiki/Chlamydomonas_reinhardtii Chlamydomonas reinhardtii]. Full crystallographic information is available from [http://oca.weizmann.ac.il/oca-bin/ocashort?id=2V67 OCA].
</div>
<div class="pdbe-citations 2v67" style="background-color:#fffaf0;"></div>


==Reference==
==See Also==
Structural analysis of altered large-subunit loop-6/carboxy-terminus interactions that influence catalytic efficiency and CO2/O2 specificity of ribulose-1,5-bisphosphate carboxylase/oxygenase., Karkehabadi S, Satagopan S, Taylor TC, Spreitzer RJ, Andersson I, Biochemistry. 2007 Oct 2;46(39):11080-9. Epub 2007 Sep 8. PMID:[http://www.ncbi.nlm.nih.gov/pubmed/17824672 17824672]
*[[RuBisCO 3D structures|RuBisCO 3D structures]]
== References ==
<references/>
__TOC__
</StructureSection>
[[Category: Chlamydomonas reinhardtii]]
[[Category: Chlamydomonas reinhardtii]]
[[Category: Protein complex]]
[[Category: Large Structures]]
[[Category: Ribulose-bisphosphate carboxylase]]
[[Category: Andersson I]]
[[Category: Andersson, I.]]
[[Category: Karkehabadi S]]
[[Category: Karkehabadi, S.]]
[[Category: Satagopan S]]
[[Category: Satagopan, S.]]
[[Category: Spreitzer RJ]]
[[Category: Spreitzer, R J.]]
[[Category: Taylor TC]]
[[Category: Taylor, T C.]]
[[Category: Acetylation]]
[[Category: Calvin cycle]]
[[Category: Carbon dioxide fixation]]
[[Category: Chloroplast]]
[[Category: Co2/o2 specificity]]
[[Category: Hydroxylation]]
[[Category: Large subunit loop 6 mutation]]
[[Category: Lyase]]
[[Category: Magnesium]]
[[Category: Metal-binding]]
[[Category: Methylation]]
[[Category: Monooxygenase]]
[[Category: Oxidoreductase]]
[[Category: Photorespiration]]
[[Category: Photosynthesis]]
[[Category: Plastid]]
[[Category: Rubisco]]
[[Category: Transit peptide]]
''Page seeded by [http://oca.weizmann.ac.il/oca OCA ] on Sun May  4 18:15:46 2008''

Proteopedia Page Contributors and Editors (what is this?)Proteopedia Page Contributors and Editors (what is this?)

OCA