2v5k: Difference between revisions

From Proteopedia
Jump to navigation Jump to search
No edit summary
No edit summary
 
(6 intermediate revisions by the same user not shown)
Line 1: Line 1:
[[Image:2v5k.png|left|200px]]


{{STRUCTURE_2v5k| PDB=2v5k | SCENE= }}
==Class II aldolase HpcH - magnesium - oxamate complex==
<StructureSection load='2v5k' size='340' side='right'caption='[[2v5k]], [[Resolution|resolution]] 2.20&Aring;' scene=''>
== Structural highlights ==
<table><tr><td colspan='2'>[[2v5k]] is a 2 chain structure with sequence from [https://en.wikipedia.org/wiki/Escherichia_coli_C Escherichia coli C]. Full crystallographic information is available from [http://oca.weizmann.ac.il/oca-bin/ocashort?id=2V5K OCA]. For a <b>guided tour on the structure components</b> use [https://proteopedia.org/fgij/fg.htm?mol=2V5K FirstGlance]. <br>
</td></tr><tr id='method'><td class="sblockLbl"><b>[[Empirical_models|Method:]]</b></td><td class="sblockDat" id="methodDat">X-ray diffraction, [[Resolution|Resolution]] 2.2&#8491;</td></tr>
<tr id='ligand'><td class="sblockLbl"><b>[[Ligand|Ligands:]]</b></td><td class="sblockDat" id="ligandDat"><scene name='pdbligand=MG:MAGNESIUM+ION'>MG</scene>, <scene name='pdbligand=OXM:OXAMIC+ACID'>OXM</scene>, <scene name='pdbligand=PO4:PHOSPHATE+ION'>PO4</scene></td></tr>
<tr id='resources'><td class="sblockLbl"><b>Resources:</b></td><td class="sblockDat"><span class='plainlinks'>[https://proteopedia.org/fgij/fg.htm?mol=2v5k FirstGlance], [http://oca.weizmann.ac.il/oca-bin/ocaids?id=2v5k OCA], [https://pdbe.org/2v5k PDBe], [https://www.rcsb.org/pdb/explore.do?structureId=2v5k RCSB], [https://www.ebi.ac.uk/pdbsum/2v5k PDBsum], [https://prosat.h-its.org/prosat/prosatexe?pdbcode=2v5k ProSAT]</span></td></tr>
</table>
== Function ==
[https://www.uniprot.org/uniprot/HPCH_ECOLX HPCH_ECOLX] Catalyzes the reversible retro-aldol cleavage of 4-hydroxy-2-ketoheptane-1,7-dioate (HKHD) to pyruvate and succinate semialdehyde. Is also able to catalyze the aldol cleavage of 4-hydroxy-2-ketopentanoate and 4-hydroxy-2-ketohexanoate. Is not stereospecific since it can cleave both substrate enantiomers. Also exhibits significant oxaloacetate decarboxylase activity in vitro. In the reverse direction, is able to condense a range of aldehyde acceptors (from two to five carbons in length) with pyruvate or 2-oxobutanoate. Unlike with BphI from Burkholderia xenovorans, the aldol addition reaction lacks stereospecificity, producing a racemic mixture.<ref>PMID:15996099</ref> <ref>PMID:20364820</ref>
== Evolutionary Conservation ==
[[Image:Consurf_key_small.gif|200px|right]]
Check<jmol>
  <jmolCheckbox>
    <scriptWhenChecked>; select protein; define ~consurf_to_do selected; consurf_initial_scene = true; script "/wiki/ConSurf/v5/2v5k_consurf.spt"</scriptWhenChecked>
    <scriptWhenUnchecked>script /wiki/extensions/Proteopedia/spt/initialview01.spt</scriptWhenUnchecked>
    <text>to colour the structure by Evolutionary Conservation</text>
  </jmolCheckbox>
</jmol>, as determined by [http://consurfdb.tau.ac.il/ ConSurfDB]. You may read the [[Conservation%2C_Evolutionary|explanation]] of the method and the full data available from [http://bental.tau.ac.il/new_ConSurfDB/main_output.php?pdb_ID=2v5k ConSurf].
<div style="clear:both"></div>
<div style="background-color:#fffaf0;">
== Publication Abstract from PubMed ==
Microorganisms are adept at degrading chemically resistant aromatic compounds. One of the longest and most well characterized aromatic catabolic pathways is the 4-hydroxyphenylacetic acid degradation pathway of Escherichia coli. The final step involves the conversion of 4-hydroxy-2-oxo-heptane-1,7-dioate into pyruvate and succinic semialdehyde. This reaction is catalyzed by 4-hydroxy-2-oxo-heptane-1,7-dioate aldolase (HpcH), a member of the divalent metal ion dependent class II aldolase enzymes that have great biosynthetic potential. We have solved the crystal structure of HpcH in the apo form, and with magnesium and the substrate analogue oxamate bound, to 1.6 A and 2.0 A, respectively. Comparison with similar structures of the homologous 2-dehydro-3-deoxygalactarate aldolase, coupled with site-directed mutagenesis data, implicate histidine 45 and arginine 70 as key catalytic residues.


===CLASS II ALDOLASE HPCH - MAGNESIUM - OXAMATE COMPLEX===
Structure and mechanism of HpcH: a metal ion dependent class II aldolase from the homoprotocatechuate degradation pathway of Escherichia coli.,Rea D, Fulop V, Bugg TD, Roper DI J Mol Biol. 2007 Nov 2;373(4):866-76. Epub 2007 Jun 26. PMID:17881002<ref>PMID:17881002</ref>


{{ABSTRACT_PUBMED_17881002}}
From MEDLINE&reg;/PubMed&reg;, a database of the U.S. National Library of Medicine.<br>
 
</div>
==About this Structure==
<div class="pdbe-citations 2v5k" style="background-color:#fffaf0;"></div>
[[2v5k]] is a 2 chain structure with sequence from [http://en.wikipedia.org/wiki/Escherichia_coli Escherichia coli]. Full crystallographic information is available from [http://oca.weizmann.ac.il/oca-bin/ocashort?id=2V5K OCA].


==See Also==
==See Also==
*[[Aldolase|Aldolase]]
*[[Aldolase 3D structures|Aldolase 3D structures]]
 
== References ==
==Reference==
<references/>
<ref group="xtra">PMID:017881002</ref><references group="xtra"/>
__TOC__
[[Category: Escherichia coli]]
</StructureSection>
[[Category: Bugg, T D.H.]]
[[Category: Escherichia coli C]]
[[Category: Fulop, V.]]
[[Category: Large Structures]]
[[Category: Rea, D.]]
[[Category: Bugg TDH]]
[[Category: Roper, D I.]]
[[Category: Fulop V]]
[[Category: Aromatic degradation]]
[[Category: Rea D]]
[[Category: Aromatic hydrocarbons catabolismhomoprotocatechuate]]
[[Category: Roper DI]]
[[Category: Class ii aldolase]]
[[Category: Homoprotocatechuate]]
[[Category: Lyase]]

Latest revision as of 18:06, 13 December 2023

Class II aldolase HpcH - magnesium - oxamate complexClass II aldolase HpcH - magnesium - oxamate complex

Structural highlights

2v5k is a 2 chain structure with sequence from Escherichia coli C. Full crystallographic information is available from OCA. For a guided tour on the structure components use FirstGlance.
Method:X-ray diffraction, Resolution 2.2Å
Ligands:, ,
Resources:FirstGlance, OCA, PDBe, RCSB, PDBsum, ProSAT

Function

HPCH_ECOLX Catalyzes the reversible retro-aldol cleavage of 4-hydroxy-2-ketoheptane-1,7-dioate (HKHD) to pyruvate and succinate semialdehyde. Is also able to catalyze the aldol cleavage of 4-hydroxy-2-ketopentanoate and 4-hydroxy-2-ketohexanoate. Is not stereospecific since it can cleave both substrate enantiomers. Also exhibits significant oxaloacetate decarboxylase activity in vitro. In the reverse direction, is able to condense a range of aldehyde acceptors (from two to five carbons in length) with pyruvate or 2-oxobutanoate. Unlike with BphI from Burkholderia xenovorans, the aldol addition reaction lacks stereospecificity, producing a racemic mixture.[1] [2]

Evolutionary Conservation

Check, as determined by ConSurfDB. You may read the explanation of the method and the full data available from ConSurf.

Publication Abstract from PubMed

Microorganisms are adept at degrading chemically resistant aromatic compounds. One of the longest and most well characterized aromatic catabolic pathways is the 4-hydroxyphenylacetic acid degradation pathway of Escherichia coli. The final step involves the conversion of 4-hydroxy-2-oxo-heptane-1,7-dioate into pyruvate and succinic semialdehyde. This reaction is catalyzed by 4-hydroxy-2-oxo-heptane-1,7-dioate aldolase (HpcH), a member of the divalent metal ion dependent class II aldolase enzymes that have great biosynthetic potential. We have solved the crystal structure of HpcH in the apo form, and with magnesium and the substrate analogue oxamate bound, to 1.6 A and 2.0 A, respectively. Comparison with similar structures of the homologous 2-dehydro-3-deoxygalactarate aldolase, coupled with site-directed mutagenesis data, implicate histidine 45 and arginine 70 as key catalytic residues.

Structure and mechanism of HpcH: a metal ion dependent class II aldolase from the homoprotocatechuate degradation pathway of Escherichia coli.,Rea D, Fulop V, Bugg TD, Roper DI J Mol Biol. 2007 Nov 2;373(4):866-76. Epub 2007 Jun 26. PMID:17881002[3]

From MEDLINE®/PubMed®, a database of the U.S. National Library of Medicine.

See Also

References

  1. Wang W, Seah SY. Purification and biochemical characterization of a pyruvate-specific class II aldolase, HpaI. Biochemistry. 2005 Jul 12;44(27):9447-55. PMID:15996099 doi:10.1021/bi050607y
  2. Wang W, Baker P, Seah SY. Comparison of two metal-dependent pyruvate aldolases related by convergent evolution: substrate specificity, kinetic mechanism, and substrate channeling. Biochemistry. 2010 May 4;49(17):3774-82. PMID:20364820 doi:10.1021/bi100251u
  3. Rea D, Fulop V, Bugg TD, Roper DI. Structure and mechanism of HpcH: a metal ion dependent class II aldolase from the homoprotocatechuate degradation pathway of Escherichia coli. J Mol Biol. 2007 Nov 2;373(4):866-76. Epub 2007 Jun 26. PMID:17881002 doi:10.1016/j.jmb.2007.06.048

2v5k, resolution 2.20Å

Drag the structure with the mouse to rotate

Proteopedia Page Contributors and Editors (what is this?)Proteopedia Page Contributors and Editors (what is this?)

OCA