2iw4: Difference between revisions

From Proteopedia
Jump to navigation Jump to search
No edit summary
No edit summary
 
(21 intermediate revisions by the same user not shown)
Line 1: Line 1:
[[Image:2iw4.gif|left|200px]]<br />
<applet load="2iw4" size="450" color="white" frame="true" align="right" spinBox="true"
caption="2iw4, resolution 2.15&Aring;" />
'''CRYSTAL STRUCTURE OF BASILLUS SUBTILIS FAMILY II INORGANIC PYROPHOSPHATASE MUTANT, H98Q, IN COMPLEX WITH PNP'''<br />


==Overview==
==CRYSTAL STRUCTURE OF BASILLUS SUBTILIS FAMILY II INORGANIC PYROPHOSPHATASE MUTANT, H98Q, IN COMPLEX WITH PNP==
We report the first crystal structures of a family II pyrophosphatase, complexed with a substrate analogue, imidodiphosphate (PNP). These provide, new insights into the catalytic reaction mechanism of this enzyme family., We were able to capture the substrate complex both by fluoride inhibition, and by site-directed mutagenesis providing complementary snapshots of the, Michaelis complex. Structures of both the fluoride-inhibited wild type and, the H98Q variant of the PNP-Bacillus subtilis pyrophosphatase complex show, a unique trinuclear metal center. Each metal ion coordinates a terminal, oxygen on the electrophilic phosphate and a lone pair on the putative, nucleophile, thus placing it in line with the scissile bond without any, coordination by protein. The nucleophile moves further ... [[http://ispc.weizmann.ac.il/pmbin/getpm?17095506 (full description)]]
<StructureSection load='2iw4' size='340' side='right'caption='[[2iw4]], [[Resolution|resolution]] 2.15&Aring;' scene=''>
== Structural highlights ==
<table><tr><td colspan='2'>[[2iw4]] is a 2 chain structure with sequence from [https://en.wikipedia.org/wiki/Bacillus_subtilis Bacillus subtilis]. Full crystallographic information is available from [http://oca.weizmann.ac.il/oca-bin/ocashort?id=2IW4 OCA]. For a <b>guided tour on the structure components</b> use [https://proteopedia.org/fgij/fg.htm?mol=2IW4 FirstGlance]. <br>
</td></tr><tr id='method'><td class="sblockLbl"><b>[[Empirical_models|Method:]]</b></td><td class="sblockDat" id="methodDat">X-ray diffraction, [[Resolution|Resolution]] 2.15&#8491;</td></tr>
<tr id='ligand'><td class="sblockLbl"><b>[[Ligand|Ligands:]]</b></td><td class="sblockDat" id="ligandDat"><scene name='pdbligand=2PN:IMIDODIPHOSPHORIC+ACID'>2PN</scene>, <scene name='pdbligand=FE:FE+(III)+ION'>FE</scene>, <scene name='pdbligand=GOL:GLYCEROL'>GOL</scene>, <scene name='pdbligand=MG:MAGNESIUM+ION'>MG</scene>, <scene name='pdbligand=MN:MANGANESE+(II)+ION'>MN</scene>, <scene name='pdbligand=PG4:TETRAETHYLENE+GLYCOL'>PG4</scene>, <scene name='pdbligand=SO4:SULFATE+ION'>SO4</scene></td></tr>
<tr id='resources'><td class="sblockLbl"><b>Resources:</b></td><td class="sblockDat"><span class='plainlinks'>[https://proteopedia.org/fgij/fg.htm?mol=2iw4 FirstGlance], [http://oca.weizmann.ac.il/oca-bin/ocaids?id=2iw4 OCA], [https://pdbe.org/2iw4 PDBe], [https://www.rcsb.org/pdb/explore.do?structureId=2iw4 RCSB], [https://www.ebi.ac.uk/pdbsum/2iw4 PDBsum], [https://prosat.h-its.org/prosat/prosatexe?pdbcode=2iw4 ProSAT]</span></td></tr>
</table>
== Function ==
[https://www.uniprot.org/uniprot/PPAC_BACSU PPAC_BACSU]
== Evolutionary Conservation ==
[[Image:Consurf_key_small.gif|200px|right]]
Check<jmol>
  <jmolCheckbox>
    <scriptWhenChecked>; select protein; define ~consurf_to_do selected; consurf_initial_scene = true; script "/wiki/ConSurf/iw/2iw4_consurf.spt"</scriptWhenChecked>
    <scriptWhenUnchecked>script /wiki/extensions/Proteopedia/spt/initialview01.spt</scriptWhenUnchecked>
    <text>to colour the structure by Evolutionary Conservation</text>
  </jmolCheckbox>
</jmol>, as determined by [http://consurfdb.tau.ac.il/ ConSurfDB]. You may read the [[Conservation%2C_Evolutionary|explanation]] of the method and the full data available from [http://bental.tau.ac.il/new_ConSurfDB/main_output.php?pdb_ID=2iw4 ConSurf].
<div style="clear:both"></div>
<div style="background-color:#fffaf0;">
== Publication Abstract from PubMed ==
We report the first crystal structures of a family II pyrophosphatase complexed with a substrate analogue, imidodiphosphate (PNP). These provide new insights into the catalytic reaction mechanism of this enzyme family. We were able to capture the substrate complex both by fluoride inhibition and by site-directed mutagenesis providing complementary snapshots of the Michaelis complex. Structures of both the fluoride-inhibited wild type and the H98Q variant of the PNP-Bacillus subtilis pyrophosphatase complex show a unique trinuclear metal center. Each metal ion coordinates a terminal oxygen on the electrophilic phosphate and a lone pair on the putative nucleophile, thus placing it in line with the scissile bond without any coordination by protein. The nucleophile moves further away from the electrophilic phosphorus site, to the opposite side of the trimetal plane, upon binding of substrate. In comparison with earlier product complexes, the side chain of Lys296 has swung in and so three positively charged side chains, His98, Lys205 and Lys296, now surround the bridging nitrogen in PNP. Finally, one of the active sites in the wild-type structure appears to show evidence of substrate distortion. Binding to the enzyme may thus strain the substrate and thus enhance the catalytic rate.


==About this Structure==
A trimetal site and substrate distortion in a family II inorganic pyrophosphatase.,Fabrichniy IP, Lehtio L, Tammenkoski M, Zyryanov AB, Oksanen E, Baykov AA, Lahti R, Goldman A J Biol Chem. 2007 Jan 12;282(2):1422-31. Epub 2006 Nov 8. PMID:17095506<ref>PMID:17095506</ref>
2IW4 is a [[http://en.wikipedia.org/wiki/Single_protein Single protein]] structure of sequence from [[http://en.wikipedia.org/wiki/Bacillus_subtilis Bacillus subtilis]] with FE, MG, MN, SO4, 2PN, PG4 and GOL as [[http://en.wikipedia.org/wiki/ligands ligands]]. Active as [[http://en.wikipedia.org/wiki/Inorganic_diphosphatase Inorganic diphosphatase]], with EC number [[http://www.brenda-enzymes.info/php/result_flat.php4?ecno=3.6.1.1 3.6.1.1]]. Structure known Active Site: AC1. Full crystallographic information is available from [[http://ispc.weizmann.ac.il/oca-bin/ocashort?id=2IW4 OCA]].


==Reference==
From MEDLINE&reg;/PubMed&reg;, a database of the U.S. National Library of Medicine.<br>
A trimetal site and substrate distortion in a family II inorganic pyrophosphatase., Fabrichniy IP, Lehtio L, Tammenkoski M, Zyryanov AB, Oksanen E, Baykov AA, Lahti R, Goldman A, J Biol Chem. 2007 Jan 12;282(2):1422-31. Epub 2006 Nov 8. PMID:[http://ispc.weizmann.ac.il//pmbin/getpm?pmid=17095506 17095506]
</div>
<div class="pdbe-citations 2iw4" style="background-color:#fffaf0;"></div>
 
==See Also==
*[[Inorganic pyrophosphatase 3D structures|Inorganic pyrophosphatase 3D structures]]
== References ==
<references/>
__TOC__
</StructureSection>
[[Category: Bacillus subtilis]]
[[Category: Bacillus subtilis]]
[[Category: Inorganic diphosphatase]]
[[Category: Large Structures]]
[[Category: Single protein]]
[[Category: Fabrichniy IP]]
[[Category: Fabrichniy, I.P.]]
[[Category: Goldman A]]
[[Category: Goldman, A.]]
[[Category: Lehtio L]]
[[Category: Lehtio, L.]]
[[Category: Oksanen E]]
[[Category: Oksanen, E.]]
[[Category: 2PN]]
[[Category: FE]]
[[Category: GOL]]
[[Category: MG]]
[[Category: MN]]
[[Category: PG4]]
[[Category: SO4]]
[[Category: hydrolase]]
[[Category: manganese]]
[[Category: metal-binding]]
[[Category: mutant]]
[[Category: pyrophosphatase]]
[[Category: substrate complex]]
 
''Page seeded by [http://ispc.weizmann.ac.il/oca OCA ] on Tue Oct 30 11:38:46 2007''

Latest revision as of 17:26, 13 December 2023

CRYSTAL STRUCTURE OF BASILLUS SUBTILIS FAMILY II INORGANIC PYROPHOSPHATASE MUTANT, H98Q, IN COMPLEX WITH PNPCRYSTAL STRUCTURE OF BASILLUS SUBTILIS FAMILY II INORGANIC PYROPHOSPHATASE MUTANT, H98Q, IN COMPLEX WITH PNP

Structural highlights

2iw4 is a 2 chain structure with sequence from Bacillus subtilis. Full crystallographic information is available from OCA. For a guided tour on the structure components use FirstGlance.
Method:X-ray diffraction, Resolution 2.15Å
Ligands:, , , , , ,
Resources:FirstGlance, OCA, PDBe, RCSB, PDBsum, ProSAT

Function

PPAC_BACSU

Evolutionary Conservation

Check, as determined by ConSurfDB. You may read the explanation of the method and the full data available from ConSurf.

Publication Abstract from PubMed

We report the first crystal structures of a family II pyrophosphatase complexed with a substrate analogue, imidodiphosphate (PNP). These provide new insights into the catalytic reaction mechanism of this enzyme family. We were able to capture the substrate complex both by fluoride inhibition and by site-directed mutagenesis providing complementary snapshots of the Michaelis complex. Structures of both the fluoride-inhibited wild type and the H98Q variant of the PNP-Bacillus subtilis pyrophosphatase complex show a unique trinuclear metal center. Each metal ion coordinates a terminal oxygen on the electrophilic phosphate and a lone pair on the putative nucleophile, thus placing it in line with the scissile bond without any coordination by protein. The nucleophile moves further away from the electrophilic phosphorus site, to the opposite side of the trimetal plane, upon binding of substrate. In comparison with earlier product complexes, the side chain of Lys296 has swung in and so three positively charged side chains, His98, Lys205 and Lys296, now surround the bridging nitrogen in PNP. Finally, one of the active sites in the wild-type structure appears to show evidence of substrate distortion. Binding to the enzyme may thus strain the substrate and thus enhance the catalytic rate.

A trimetal site and substrate distortion in a family II inorganic pyrophosphatase.,Fabrichniy IP, Lehtio L, Tammenkoski M, Zyryanov AB, Oksanen E, Baykov AA, Lahti R, Goldman A J Biol Chem. 2007 Jan 12;282(2):1422-31. Epub 2006 Nov 8. PMID:17095506[1]

From MEDLINE®/PubMed®, a database of the U.S. National Library of Medicine.

See Also

References

  1. Fabrichniy IP, Lehtio L, Tammenkoski M, Zyryanov AB, Oksanen E, Baykov AA, Lahti R, Goldman A. A trimetal site and substrate distortion in a family II inorganic pyrophosphatase. J Biol Chem. 2007 Jan 12;282(2):1422-31. Epub 2006 Nov 8. PMID:17095506 doi:10.1074/jbc.M513161200

2iw4, resolution 2.15Å

Drag the structure with the mouse to rotate

Proteopedia Page Contributors and Editors (what is this?)Proteopedia Page Contributors and Editors (what is this?)

OCA