2brk: Difference between revisions

From Proteopedia
Jump to navigation Jump to search
No edit summary
No edit summary
 
(20 intermediate revisions by the same user not shown)
Line 1: Line 1:
[[Image:2brk.gif|left|200px]]<br />
<applet load="2brk" size="450" color="white" frame="true" align="right" spinBox="true"
caption="2brk, resolution 2.30&Aring;" />
'''CRYSTAL STRUCTURE OF HEPATITIS C VIRUS POLYMERASE IN COMPLEX WITH AN ALLOSTERIC INHIBITOR (COMPOUND 1)'''<br />


==About this Structure==
==Crystal structure of Hepatitis C virus polymerase in complex with an allosteric inhibitor (compound 1)==
2BRK is a [[http://en.wikipedia.org/wiki/Single_protein Single protein]] structure of sequence from [[http://en.wikipedia.org/wiki/Gb_virus_c Gb virus c]] with MN and CMF as [[http://en.wikipedia.org/wiki/ligands ligands]]. Active as [[http://en.wikipedia.org/wiki/RNA-directed_RNA_polymerase RNA-directed RNA polymerase]], with EC number [[http://www.brenda-enzymes.info/php/result_flat.php4?ecno=2.7.7.48 2.7.7.48]]. Structure known Active Site: AC1. Full crystallographic information is available from [[http://ispc.weizmann.ac.il/oca-bin/ocashort?id=2BRK OCA]].  
<StructureSection load='2brk' size='340' side='right'caption='[[2brk]], [[Resolution|resolution]] 2.30&Aring;' scene=''>
[[Category: Gb virus c]]
== Structural highlights ==
[[Category: RNA-directed RNA polymerase]]
<table><tr><td colspan='2'>[[2brk]] is a 1 chain structure with sequence from [https://en.wikipedia.org/wiki/Hepacivirus_C Hepacivirus C]. Full crystallographic information is available from [http://oca.weizmann.ac.il/oca-bin/ocashort?id=2BRK OCA]. For a <b>guided tour on the structure components</b> use [https://proteopedia.org/fgij/fg.htm?mol=2BRK FirstGlance]. <br>
[[Category: Single protein]]
</td></tr><tr id='method'><td class="sblockLbl"><b>[[Empirical_models|Method:]]</b></td><td class="sblockDat" id="methodDat">X-ray diffraction, [[Resolution|Resolution]] 2.3&#8491;</td></tr>
[[Category: Carfi, A.]]
<tr id='ligand'><td class="sblockLbl"><b>[[Ligand|Ligands:]]</b></td><td class="sblockDat" id="ligandDat"><scene name='pdbligand=CMF:3-CYCLOHEXYL-1-(2-MORPHOLIN-4-YL-2-OXOETHYL)-2-PHENYL-1H-INDOLE-6-CARBOXYLIC+ACID'>CMF</scene>, <scene name='pdbligand=MN:MANGANESE+(II)+ION'>MN</scene></td></tr>
[[Category: Marco, S.Di.]]
<tr id='resources'><td class="sblockLbl"><b>Resources:</b></td><td class="sblockDat"><span class='plainlinks'>[https://proteopedia.org/fgij/fg.htm?mol=2brk FirstGlance], [http://oca.weizmann.ac.il/oca-bin/ocaids?id=2brk OCA], [https://pdbe.org/2brk PDBe], [https://www.rcsb.org/pdb/explore.do?structureId=2brk RCSB], [https://www.ebi.ac.uk/pdbsum/2brk PDBsum], [https://prosat.h-its.org/prosat/prosatexe?pdbcode=2brk ProSAT]</span></td></tr>
[[Category: Volpari, C.]]
</table>
[[Category: CMF]]
== Function ==
[[Category: MN]]
[https://www.uniprot.org/uniprot/POLG_HCVBK POLG_HCVBK] Core protein packages viral RNA to form a viral nucleocapsid, and promotes virion budding. Modulates viral translation initiation by interacting with HCV IRES and 40S ribosomal subunit. Also regulates many host cellular functions such as signaling pathways and apoptosis. Prevents the establishment of cellular antiviral state by blocking the interferon-alpha/beta (IFN-alpha/beta) and IFN-gamma signaling pathways and by inducing human STAT1 degradation. Thought to play a role in virus-mediated cell transformation leading to hepatocellular carcinomas. Interacts with, and activates STAT3 leading to cellular transformation. May repress the promoter of p53, and sequester CREB3 and SP110 isoform 3/Sp110b in the cytoplasm. Also represses cell cycle negative regulating factor CDKN1A, thereby interrupting an important check point of normal cell cycle regulation. Targets transcription factors involved in the regulation of inflammatory responses and in the immune response: suppresses NK-kappaB activation, and activates AP-1. Could mediate apoptotic pathways through association with TNF-type receptors TNFRSF1A and LTBR, although its effect on death receptor-induced apoptosis remains controversial. Enhances TRAIL mediated apoptosis, suggesting that it might play a role in immune-mediated liver cell injury. Seric core protein is able to bind C1QR1 at the T-cell surface, resulting in down-regulation of T-lymphocytes proliferation. May transactivate human MYC, Rous sarcoma virus LTR, and SV40 promoters. May suppress the human FOS and HIV-1 LTR activity. Alters lipid metabolism by interacting with hepatocellular proteins involved in lipid accumulation and storage. Core protein induces up-regulation of FAS promoter activity, and thereby probably contributes to the increased triglyceride accumulation in hepatocytes (steatosis) (By similarity).<ref>PMID:9710605</ref> <ref>PMID:16530520</ref> <ref>PMID:17188392</ref>  E1 and E2 glycoproteins form a heterodimer that is involved in virus attachment to the host cell, virion internalization through clathrin-dependent endocytosis and fusion with host membrane. E1/E2 heterodimer binds to human LDLR, CD81 and SCARB1/SR-BI receptors, but this binding is not sufficient for infection, some additional liver specific cofactors may be needed. The fusion function may possibly be carried by E1. E2 inhibits human EIF2AK2/PKR activation, preventing the establishment of an antiviral state. E2 is a viral ligand for CD209/DC-SIGN and CLEC4M/DC-SIGNR, which are respectively found on dendritic cells (DCs), and on liver sinusoidal endothelial cells and macrophage-like cells of lymph node sinuses. These interactions allow capture of circulating HCV particles by these cells and subsequent transmission to permissive cells. DCs act as sentinels in various tissues where they entrap pathogens and convey them to local lymphoid tissue or lymph node for establishment of immunity. Capture of circulating HCV particles by these SIGN+ cells may facilitate virus infection of proximal hepatocytes and lymphocyte subpopulations and may be essential for the establishment of persistent infection (By similarity).<ref>PMID:9710605</ref> <ref>PMID:16530520</ref> <ref>PMID:17188392</ref>  P7 seems to be a heptameric ion channel protein (viroporin) and is inhibited by the antiviral drug amantadine. Also inhibited by long-alkyl-chain iminosugar derivatives. Essential for infectivity (By similarity).<ref>PMID:9710605</ref> <ref>PMID:16530520</ref> <ref>PMID:17188392</ref>  Protease NS2-3 is a cysteine protease responsible for the autocatalytic cleavage of NS2-NS3. Seems to undergo self-inactivation following maturation (By similarity).<ref>PMID:9710605</ref> <ref>PMID:16530520</ref> <ref>PMID:17188392</ref>  NS3 displays three enzymatic activities: serine protease, NTPase and RNA helicase. NS3 serine protease, in association with NS4A, is responsible for the cleavages of NS3-NS4A, NS4A-NS4B, NS4B-NS5A and NS5A-NS5B. NS3/NS4A complex also prevents phosphorylation of human IRF3, thus preventing the establishment of dsRNA induced antiviral state. NS3 RNA helicase binds to RNA and unwinds dsRNA in the 3' to 5' direction, and likely RNA stable secondary structure in the template strand. Cleaves and inhibits the host antiviral protein MAVS (By similarity).<ref>PMID:9710605</ref> <ref>PMID:16530520</ref> <ref>PMID:17188392</ref>  NS4B induces a specific membrane alteration that serves as a scaffold for the virus replication complex. This membrane alteration gives rise to the so-called ER-derived membranous web that contains the replication complex (By similarity).<ref>PMID:9710605</ref> <ref>PMID:16530520</ref> <ref>PMID:17188392</ref>  NS5A is a component of the replication complex involved in RNA-binding. Its interaction with Human VAPB may target the viral replication complex to vesicles. Down-regulates viral IRES translation initiation. Mediates interferon resistance, presumably by interacting with and inhibiting human EIF2AK2/PKR. Seems to inhibit apoptosis by interacting with BIN1 and FKBP8. The hyperphosphorylated form of NS5A is an inhibitor of viral replication (By similarity).<ref>PMID:9710605</ref> <ref>PMID:16530520</ref> <ref>PMID:17188392</ref>  NS5B is a RNA-dependent RNA polymerase that plays an essential role in the virus replication (By similarity).<ref>PMID:9710605</ref> <ref>PMID:16530520</ref> <ref>PMID:17188392</ref>
[[Category: allosteric inhibitor]]
== Evolutionary Conservation ==
[[Category: atp-binding]]
[[Image:Consurf_key_small.gif|200px|right]]
[[Category: hcv]]
Check<jmol>
[[Category: hepatitis c virus]]
  <jmolCheckbox>
[[Category: ns5b]]
    <scriptWhenChecked>; select protein; define ~consurf_to_do selected; consurf_initial_scene = true; script "/wiki/ConSurf/br/2brk_consurf.spt"</scriptWhenChecked>
[[Category: polymerase]]
    <scriptWhenUnchecked>script /wiki/extensions/Proteopedia/spt/initialview01.spt</scriptWhenUnchecked>
[[Category: rna-dependent rna-polymerase]]
    <text>to colour the structure by Evolutionary Conservation</text>
[[Category: transferase]]
  </jmolCheckbox>
</jmol>, as determined by [http://consurfdb.tau.ac.il/ ConSurfDB]. You may read the [[Conservation%2C_Evolutionary|explanation]] of the method and the full data available from [http://bental.tau.ac.il/new_ConSurfDB/main_output.php?pdb_ID=2brk ConSurf].
<div style="clear:both"></div>
<div style="background-color:#fffaf0;">
== Publication Abstract from PubMed ==
The hepatitis C virus (HCV) polymerase is required for replication of the viral genome and is a key target for therapeutic intervention against HCV. We have determined the crystal structures of the HCV polymerase complexed with two indole-based allosteric inhibitors at 2.3- and 2.4-Angstroms resolution. The structures show that these inhibitors bind to a site on the surface of the thumb domain. A cyclohexyl and phenyl ring substituents, bridged by an indole moiety, fill two closely spaced pockets, whereas a carboxylate substituent forms a salt bridge with an exposed arginine side chain. Interestingly, in the apoenzyme, the inhibitor binding site is occupied by a small alpha-helix at the tip of the N-terminal loop that connects the fingers and thumb domains. Thus, these molecules inhibit the enzyme by preventing formation of intramolecular contacts between these two domains and consequently precluding their coordinated movements during RNA synthesis. Our structures identify a novel mechanism by which a new class of allosteric inhibitors inhibits the HCV polymerase and open the way to the development of novel antiviral agents against this clinically relevant human pathogen.


''Page seeded by [http://ispc.weizmann.ac.il/oca OCA ] on Tue Oct 30 16:46:06 2007''
Interdomain communication in hepatitis C virus polymerase abolished by small molecule inhibitors bound to a novel allosteric site.,Di Marco S, Volpari C, Tomei L, Altamura S, Harper S, Narjes F, Koch U, Rowley M, De Francesco R, Migliaccio G, Carfi A J Biol Chem. 2005 Aug 19;280(33):29765-70. Epub 2005 Jun 13. PMID:15955819<ref>PMID:15955819</ref>
 
From MEDLINE&reg;/PubMed&reg;, a database of the U.S. National Library of Medicine.<br>
</div>
<div class="pdbe-citations 2brk" style="background-color:#fffaf0;"></div>
 
==See Also==
*[[RNA polymerase 3D structures|RNA polymerase 3D structures]]
== References ==
<references/>
__TOC__
</StructureSection>
[[Category: Hepacivirus C]]
[[Category: Large Structures]]
[[Category: Carfi A]]
[[Category: Di Marco S]]
[[Category: Volpari C]]

Latest revision as of 16:53, 13 December 2023

Crystal structure of Hepatitis C virus polymerase in complex with an allosteric inhibitor (compound 1)Crystal structure of Hepatitis C virus polymerase in complex with an allosteric inhibitor (compound 1)

Structural highlights

2brk is a 1 chain structure with sequence from Hepacivirus C. Full crystallographic information is available from OCA. For a guided tour on the structure components use FirstGlance.
Method:X-ray diffraction, Resolution 2.3Å
Ligands:,
Resources:FirstGlance, OCA, PDBe, RCSB, PDBsum, ProSAT

Function

POLG_HCVBK Core protein packages viral RNA to form a viral nucleocapsid, and promotes virion budding. Modulates viral translation initiation by interacting with HCV IRES and 40S ribosomal subunit. Also regulates many host cellular functions such as signaling pathways and apoptosis. Prevents the establishment of cellular antiviral state by blocking the interferon-alpha/beta (IFN-alpha/beta) and IFN-gamma signaling pathways and by inducing human STAT1 degradation. Thought to play a role in virus-mediated cell transformation leading to hepatocellular carcinomas. Interacts with, and activates STAT3 leading to cellular transformation. May repress the promoter of p53, and sequester CREB3 and SP110 isoform 3/Sp110b in the cytoplasm. Also represses cell cycle negative regulating factor CDKN1A, thereby interrupting an important check point of normal cell cycle regulation. Targets transcription factors involved in the regulation of inflammatory responses and in the immune response: suppresses NK-kappaB activation, and activates AP-1. Could mediate apoptotic pathways through association with TNF-type receptors TNFRSF1A and LTBR, although its effect on death receptor-induced apoptosis remains controversial. Enhances TRAIL mediated apoptosis, suggesting that it might play a role in immune-mediated liver cell injury. Seric core protein is able to bind C1QR1 at the T-cell surface, resulting in down-regulation of T-lymphocytes proliferation. May transactivate human MYC, Rous sarcoma virus LTR, and SV40 promoters. May suppress the human FOS and HIV-1 LTR activity. Alters lipid metabolism by interacting with hepatocellular proteins involved in lipid accumulation and storage. Core protein induces up-regulation of FAS promoter activity, and thereby probably contributes to the increased triglyceride accumulation in hepatocytes (steatosis) (By similarity).[1] [2] [3] E1 and E2 glycoproteins form a heterodimer that is involved in virus attachment to the host cell, virion internalization through clathrin-dependent endocytosis and fusion with host membrane. E1/E2 heterodimer binds to human LDLR, CD81 and SCARB1/SR-BI receptors, but this binding is not sufficient for infection, some additional liver specific cofactors may be needed. The fusion function may possibly be carried by E1. E2 inhibits human EIF2AK2/PKR activation, preventing the establishment of an antiviral state. E2 is a viral ligand for CD209/DC-SIGN and CLEC4M/DC-SIGNR, which are respectively found on dendritic cells (DCs), and on liver sinusoidal endothelial cells and macrophage-like cells of lymph node sinuses. These interactions allow capture of circulating HCV particles by these cells and subsequent transmission to permissive cells. DCs act as sentinels in various tissues where they entrap pathogens and convey them to local lymphoid tissue or lymph node for establishment of immunity. Capture of circulating HCV particles by these SIGN+ cells may facilitate virus infection of proximal hepatocytes and lymphocyte subpopulations and may be essential for the establishment of persistent infection (By similarity).[4] [5] [6] P7 seems to be a heptameric ion channel protein (viroporin) and is inhibited by the antiviral drug amantadine. Also inhibited by long-alkyl-chain iminosugar derivatives. Essential for infectivity (By similarity).[7] [8] [9] Protease NS2-3 is a cysteine protease responsible for the autocatalytic cleavage of NS2-NS3. Seems to undergo self-inactivation following maturation (By similarity).[10] [11] [12] NS3 displays three enzymatic activities: serine protease, NTPase and RNA helicase. NS3 serine protease, in association with NS4A, is responsible for the cleavages of NS3-NS4A, NS4A-NS4B, NS4B-NS5A and NS5A-NS5B. NS3/NS4A complex also prevents phosphorylation of human IRF3, thus preventing the establishment of dsRNA induced antiviral state. NS3 RNA helicase binds to RNA and unwinds dsRNA in the 3' to 5' direction, and likely RNA stable secondary structure in the template strand. Cleaves and inhibits the host antiviral protein MAVS (By similarity).[13] [14] [15] NS4B induces a specific membrane alteration that serves as a scaffold for the virus replication complex. This membrane alteration gives rise to the so-called ER-derived membranous web that contains the replication complex (By similarity).[16] [17] [18] NS5A is a component of the replication complex involved in RNA-binding. Its interaction with Human VAPB may target the viral replication complex to vesicles. Down-regulates viral IRES translation initiation. Mediates interferon resistance, presumably by interacting with and inhibiting human EIF2AK2/PKR. Seems to inhibit apoptosis by interacting with BIN1 and FKBP8. The hyperphosphorylated form of NS5A is an inhibitor of viral replication (By similarity).[19] [20] [21] NS5B is a RNA-dependent RNA polymerase that plays an essential role in the virus replication (By similarity).[22] [23] [24]

Evolutionary Conservation

Check, as determined by ConSurfDB. You may read the explanation of the method and the full data available from ConSurf.

Publication Abstract from PubMed

The hepatitis C virus (HCV) polymerase is required for replication of the viral genome and is a key target for therapeutic intervention against HCV. We have determined the crystal structures of the HCV polymerase complexed with two indole-based allosteric inhibitors at 2.3- and 2.4-Angstroms resolution. The structures show that these inhibitors bind to a site on the surface of the thumb domain. A cyclohexyl and phenyl ring substituents, bridged by an indole moiety, fill two closely spaced pockets, whereas a carboxylate substituent forms a salt bridge with an exposed arginine side chain. Interestingly, in the apoenzyme, the inhibitor binding site is occupied by a small alpha-helix at the tip of the N-terminal loop that connects the fingers and thumb domains. Thus, these molecules inhibit the enzyme by preventing formation of intramolecular contacts between these two domains and consequently precluding their coordinated movements during RNA synthesis. Our structures identify a novel mechanism by which a new class of allosteric inhibitors inhibits the HCV polymerase and open the way to the development of novel antiviral agents against this clinically relevant human pathogen.

Interdomain communication in hepatitis C virus polymerase abolished by small molecule inhibitors bound to a novel allosteric site.,Di Marco S, Volpari C, Tomei L, Altamura S, Harper S, Narjes F, Koch U, Rowley M, De Francesco R, Migliaccio G, Carfi A J Biol Chem. 2005 Aug 19;280(33):29765-70. Epub 2005 Jun 13. PMID:15955819[25]

From MEDLINE®/PubMed®, a database of the U.S. National Library of Medicine.

See Also

References

  1. Gale M Jr, Blakely CM, Kwieciszewski B, Tan SL, Dossett M, Tang NM, Korth MJ, Polyak SJ, Gretch DR, Katze MG. Control of PKR protein kinase by hepatitis C virus nonstructural 5A protein: molecular mechanisms of kinase regulation. Mol Cell Biol. 1998 Sep;18(9):5208-18. PMID:9710605
  2. Nanda SK, Herion D, Liang TJ. The SH3 binding motif of HCV [corrected] NS5A protein interacts with Bin1 and is important for apoptosis and infectivity. Gastroenterology. 2006 Mar;130(3):794-809. PMID:16530520 doi:S0016-5085(05)02540-0
  3. Jackel-Cram C, Babiuk LA, Liu Q. Up-regulation of fatty acid synthase promoter by hepatitis C virus core protein: genotype-3a core has a stronger effect than genotype-1b core. J Hepatol. 2007 Jun;46(6):999-1008. Epub 2006 Nov 27. PMID:17188392 doi:10.1016/j.jhep.2006.10.019
  4. Gale M Jr, Blakely CM, Kwieciszewski B, Tan SL, Dossett M, Tang NM, Korth MJ, Polyak SJ, Gretch DR, Katze MG. Control of PKR protein kinase by hepatitis C virus nonstructural 5A protein: molecular mechanisms of kinase regulation. Mol Cell Biol. 1998 Sep;18(9):5208-18. PMID:9710605
  5. Nanda SK, Herion D, Liang TJ. The SH3 binding motif of HCV [corrected] NS5A protein interacts with Bin1 and is important for apoptosis and infectivity. Gastroenterology. 2006 Mar;130(3):794-809. PMID:16530520 doi:S0016-5085(05)02540-0
  6. Jackel-Cram C, Babiuk LA, Liu Q. Up-regulation of fatty acid synthase promoter by hepatitis C virus core protein: genotype-3a core has a stronger effect than genotype-1b core. J Hepatol. 2007 Jun;46(6):999-1008. Epub 2006 Nov 27. PMID:17188392 doi:10.1016/j.jhep.2006.10.019
  7. Gale M Jr, Blakely CM, Kwieciszewski B, Tan SL, Dossett M, Tang NM, Korth MJ, Polyak SJ, Gretch DR, Katze MG. Control of PKR protein kinase by hepatitis C virus nonstructural 5A protein: molecular mechanisms of kinase regulation. Mol Cell Biol. 1998 Sep;18(9):5208-18. PMID:9710605
  8. Nanda SK, Herion D, Liang TJ. The SH3 binding motif of HCV [corrected] NS5A protein interacts with Bin1 and is important for apoptosis and infectivity. Gastroenterology. 2006 Mar;130(3):794-809. PMID:16530520 doi:S0016-5085(05)02540-0
  9. Jackel-Cram C, Babiuk LA, Liu Q. Up-regulation of fatty acid synthase promoter by hepatitis C virus core protein: genotype-3a core has a stronger effect than genotype-1b core. J Hepatol. 2007 Jun;46(6):999-1008. Epub 2006 Nov 27. PMID:17188392 doi:10.1016/j.jhep.2006.10.019
  10. Gale M Jr, Blakely CM, Kwieciszewski B, Tan SL, Dossett M, Tang NM, Korth MJ, Polyak SJ, Gretch DR, Katze MG. Control of PKR protein kinase by hepatitis C virus nonstructural 5A protein: molecular mechanisms of kinase regulation. Mol Cell Biol. 1998 Sep;18(9):5208-18. PMID:9710605
  11. Nanda SK, Herion D, Liang TJ. The SH3 binding motif of HCV [corrected] NS5A protein interacts with Bin1 and is important for apoptosis and infectivity. Gastroenterology. 2006 Mar;130(3):794-809. PMID:16530520 doi:S0016-5085(05)02540-0
  12. Jackel-Cram C, Babiuk LA, Liu Q. Up-regulation of fatty acid synthase promoter by hepatitis C virus core protein: genotype-3a core has a stronger effect than genotype-1b core. J Hepatol. 2007 Jun;46(6):999-1008. Epub 2006 Nov 27. PMID:17188392 doi:10.1016/j.jhep.2006.10.019
  13. Gale M Jr, Blakely CM, Kwieciszewski B, Tan SL, Dossett M, Tang NM, Korth MJ, Polyak SJ, Gretch DR, Katze MG. Control of PKR protein kinase by hepatitis C virus nonstructural 5A protein: molecular mechanisms of kinase regulation. Mol Cell Biol. 1998 Sep;18(9):5208-18. PMID:9710605
  14. Nanda SK, Herion D, Liang TJ. The SH3 binding motif of HCV [corrected] NS5A protein interacts with Bin1 and is important for apoptosis and infectivity. Gastroenterology. 2006 Mar;130(3):794-809. PMID:16530520 doi:S0016-5085(05)02540-0
  15. Jackel-Cram C, Babiuk LA, Liu Q. Up-regulation of fatty acid synthase promoter by hepatitis C virus core protein: genotype-3a core has a stronger effect than genotype-1b core. J Hepatol. 2007 Jun;46(6):999-1008. Epub 2006 Nov 27. PMID:17188392 doi:10.1016/j.jhep.2006.10.019
  16. Gale M Jr, Blakely CM, Kwieciszewski B, Tan SL, Dossett M, Tang NM, Korth MJ, Polyak SJ, Gretch DR, Katze MG. Control of PKR protein kinase by hepatitis C virus nonstructural 5A protein: molecular mechanisms of kinase regulation. Mol Cell Biol. 1998 Sep;18(9):5208-18. PMID:9710605
  17. Nanda SK, Herion D, Liang TJ. The SH3 binding motif of HCV [corrected] NS5A protein interacts with Bin1 and is important for apoptosis and infectivity. Gastroenterology. 2006 Mar;130(3):794-809. PMID:16530520 doi:S0016-5085(05)02540-0
  18. Jackel-Cram C, Babiuk LA, Liu Q. Up-regulation of fatty acid synthase promoter by hepatitis C virus core protein: genotype-3a core has a stronger effect than genotype-1b core. J Hepatol. 2007 Jun;46(6):999-1008. Epub 2006 Nov 27. PMID:17188392 doi:10.1016/j.jhep.2006.10.019
  19. Gale M Jr, Blakely CM, Kwieciszewski B, Tan SL, Dossett M, Tang NM, Korth MJ, Polyak SJ, Gretch DR, Katze MG. Control of PKR protein kinase by hepatitis C virus nonstructural 5A protein: molecular mechanisms of kinase regulation. Mol Cell Biol. 1998 Sep;18(9):5208-18. PMID:9710605
  20. Nanda SK, Herion D, Liang TJ. The SH3 binding motif of HCV [corrected] NS5A protein interacts with Bin1 and is important for apoptosis and infectivity. Gastroenterology. 2006 Mar;130(3):794-809. PMID:16530520 doi:S0016-5085(05)02540-0
  21. Jackel-Cram C, Babiuk LA, Liu Q. Up-regulation of fatty acid synthase promoter by hepatitis C virus core protein: genotype-3a core has a stronger effect than genotype-1b core. J Hepatol. 2007 Jun;46(6):999-1008. Epub 2006 Nov 27. PMID:17188392 doi:10.1016/j.jhep.2006.10.019
  22. Gale M Jr, Blakely CM, Kwieciszewski B, Tan SL, Dossett M, Tang NM, Korth MJ, Polyak SJ, Gretch DR, Katze MG. Control of PKR protein kinase by hepatitis C virus nonstructural 5A protein: molecular mechanisms of kinase regulation. Mol Cell Biol. 1998 Sep;18(9):5208-18. PMID:9710605
  23. Nanda SK, Herion D, Liang TJ. The SH3 binding motif of HCV [corrected] NS5A protein interacts with Bin1 and is important for apoptosis and infectivity. Gastroenterology. 2006 Mar;130(3):794-809. PMID:16530520 doi:S0016-5085(05)02540-0
  24. Jackel-Cram C, Babiuk LA, Liu Q. Up-regulation of fatty acid synthase promoter by hepatitis C virus core protein: genotype-3a core has a stronger effect than genotype-1b core. J Hepatol. 2007 Jun;46(6):999-1008. Epub 2006 Nov 27. PMID:17188392 doi:10.1016/j.jhep.2006.10.019
  25. Di Marco S, Volpari C, Tomei L, Altamura S, Harper S, Narjes F, Koch U, Rowley M, De Francesco R, Migliaccio G, Carfi A. Interdomain communication in hepatitis C virus polymerase abolished by small molecule inhibitors bound to a novel allosteric site. J Biol Chem. 2005 Aug 19;280(33):29765-70. Epub 2005 Jun 13. PMID:15955819 doi:http://dx.doi.org/10.1074/jbc.M505423200

2brk, resolution 2.30Å

Drag the structure with the mouse to rotate

Proteopedia Page Contributors and Editors (what is this?)Proteopedia Page Contributors and Editors (what is this?)

OCA