1uxp: Difference between revisions

From Proteopedia
Jump to navigation Jump to search
No edit summary
No edit summary
 
(9 intermediate revisions by the same user not shown)
Line 1: Line 1:
{{Seed}}
[[Image:1uxp.png|left|200px]]


<!--
==Structural basis for allosteric regulation and substrate specificity of the non-phosphorylating glyceraldehyde-3-phosphate dehydrogenase (GAPN) from Thermoproteus tenax==
The line below this paragraph, containing "STRUCTURE_1uxp", creates the "Structure Box" on the page.
<StructureSection load='1uxp' size='340' side='right'caption='[[1uxp]], [[Resolution|resolution]] 2.55&Aring;' scene=''>
You may change the PDB parameter (which sets the PDB file loaded into the applet)  
== Structural highlights ==
or the SCENE parameter (which sets the initial scene displayed when the page is loaded),
<table><tr><td colspan='2'>[[1uxp]] is a 1 chain structure with sequence from [https://en.wikipedia.org/wiki/Thermoproteus_tenax Thermoproteus tenax]. Full crystallographic information is available from [http://oca.weizmann.ac.il/oca-bin/ocashort?id=1UXP OCA]. For a <b>guided tour on the structure components</b> use [https://proteopedia.org/fgij/fg.htm?mol=1UXP FirstGlance]. <br>
or leave the SCENE parameter empty for the default display.
</td></tr><tr id='method'><td class="sblockLbl"><b>[[Empirical_models|Method:]]</b></td><td class="sblockDat" id="methodDat">X-ray diffraction, [[Resolution|Resolution]] 2.55&#8491;</td></tr>
-->
<tr id='ligand'><td class="sblockLbl"><b>[[Ligand|Ligands:]]</b></td><td class="sblockDat" id="ligandDat"><scene name='pdbligand=AMP:ADENOSINE+MONOPHOSPHATE'>AMP</scene>, <scene name='pdbligand=NA:SODIUM+ION'>NA</scene>, <scene name='pdbligand=NAP:NADP+NICOTINAMIDE-ADENINE-DINUCLEOTIDE+PHOSPHATE'>NAP</scene></td></tr>
{{STRUCTURE_1uxp|  PDB=1uxp  |  SCENE=  }}
<tr id='resources'><td class="sblockLbl"><b>Resources:</b></td><td class="sblockDat"><span class='plainlinks'>[https://proteopedia.org/fgij/fg.htm?mol=1uxp FirstGlance], [http://oca.weizmann.ac.il/oca-bin/ocaids?id=1uxp OCA], [https://pdbe.org/1uxp PDBe], [https://www.rcsb.org/pdb/explore.do?structureId=1uxp RCSB], [https://www.ebi.ac.uk/pdbsum/1uxp PDBsum], [https://prosat.h-its.org/prosat/prosatexe?pdbcode=1uxp ProSAT]</span></td></tr>
</table>
== Function ==
[https://www.uniprot.org/uniprot/GAPN_THETE GAPN_THETE] Catalyzes the irreversible NAD(P)-dependent non-phosphorylating oxidation of glyceraldehyde-3-phosphate (GAP) to 3-phosphoglycerate (3PG). It is highly specific for D-GAP.<ref>PMID:3121324</ref> <ref>PMID:9497334</ref>
== Evolutionary Conservation ==
[[Image:Consurf_key_small.gif|200px|right]]
Check<jmol>
  <jmolCheckbox>
    <scriptWhenChecked>; select protein; define ~consurf_to_do selected; consurf_initial_scene = true; script "/wiki/ConSurf/ux/1uxp_consurf.spt"</scriptWhenChecked>
    <scriptWhenUnchecked>script /wiki/extensions/Proteopedia/spt/initialview01.spt</scriptWhenUnchecked>
    <text>to colour the structure by Evolutionary Conservation</text>
  </jmolCheckbox>
</jmol>, as determined by [http://consurfdb.tau.ac.il/ ConSurfDB]. You may read the [[Conservation%2C_Evolutionary|explanation]] of the method and the full data available from [http://bental.tau.ac.il/new_ConSurfDB/main_output.php?pdb_ID=1uxp ConSurf].
<div style="clear:both"></div>
<div style="background-color:#fffaf0;">
== Publication Abstract from PubMed ==
The non-phosphorylating glyceraldehyde-3-phosphate dehydrogenase (GAPN) of the hyperthermophilic Archaeum Thermoproteus tenax is a member of the superfamily of aldehyde dehydrogenases (ALDH). GAPN catalyses the irreversible oxidation of glyceraldehyde 3-phosphate (GAP) to 3-phosphoglycerate in the modified glycolytic pathway of this organism. In contrast to other members of the ALDH superfamily, GAPN from T.tenax (Tt-GAPN) is regulated by a number of intermediates and metabolites. In the NAD-dependent oxidation of GAP, glucose 1-phosphate, fructose 6-phosphate, AMP and ADP increase the affinity for the cosubstrate, whereas ATP, NADP, NADPH and NADH decrease it leaving, however, the catalytic rate virtually unaltered. As we show here, the enzyme also uses NADP as a cosubstrate, displaying, however, unusual discontinuous saturation kinetics indicating different cosubstrate affinities and/or reactivities of the four active sites of the protein tetramer caused by cooperative effects. Furthermore, in the NADP-dependent reaction the presence of activators decreases the overall S0.5 and increases Vmax by a factor of 3. To explore the structural basis for the different effects of both pyridine nucleotides we solved the crystal structure of Tt-GAPN in complex with NAD at 2.2 A resolution and compared it to the binary Tt-GAPN-NADPH structure. Although both pyridine nucleotides show a similar binding mode, NADPH appears to be more tightly bound to the protein via the 2' phosphate moiety. Moreover, we present four co-crystal structures with the activating molecules glucose 1-phosphate, fructose 6-phosphate, AMP and ADP determined at resolutions ranging from 2.3 A to 2.6 A. These crystal structures reveal a common regulatory site able to accommodate the different activators. A phosphate-binding pocket serves as an anchor point ensuring similar binding geometry. The observed conformational changes upon activator binding are discussed in terms of allosteric regulation. Furthermore, we present a crystal structure of Tt-GAPN in complex with the substrate D-GAP at 2.3 A resolution, which allows us to analyse the structural basis for substrate binding, the mechanism of catalysis as well as the stereoselectivity of the enzymatic reaction.


===STRUCTURAL BASIS FOR ALLOSTERIC REGULATION AND SUBSTRATE SPECIFICITY OF THE NON-PHOSPHORYLATING GLYCERALDEHYDE-3-PHOSPHATE DEHYDROGENASE (GAPN) FROM THERMOPROTEUS TENAX===
Structural Basis of allosteric regulation and substrate specificity of the non-phosphorylating glyceraldehyde 3-Phosphate dehydrogenase from Thermoproteus tenax.,Lorentzen E, Hensel R, Knura T, Ahmed H, Pohl E J Mol Biol. 2004 Aug 13;341(3):815-28. PMID:15288789<ref>PMID:15288789</ref>


From MEDLINE&reg;/PubMed&reg;, a database of the U.S. National Library of Medicine.<br>
</div>
<div class="pdbe-citations 1uxp" style="background-color:#fffaf0;"></div>


<!--
==See Also==
The line below this paragraph, {{ABSTRACT_PUBMED_15288789}}, adds the Publication Abstract to the page
*[[Aldehyde dehydrogenase 3D structures|Aldehyde dehydrogenase 3D structures]]
(as it appears on PubMed at http://www.pubmed.gov), where 15288789 is the PubMed ID number.
*[[Glyceraldehyde-3-phosphate dehydrogenase 3D structures|Glyceraldehyde-3-phosphate dehydrogenase 3D structures]]
-->
== References ==
{{ABSTRACT_PUBMED_15288789}}
<references/>
 
__TOC__
==About this Structure==
</StructureSection>
1UXP is a 1 chain structure of sequence from [http://en.wikipedia.org/wiki/Thermoproteus_tenax Thermoproteus tenax]. Full crystallographic information is available from [http://oca.weizmann.ac.il/oca-bin/ocashort?id=1UXP OCA].
[[Category: Large Structures]]
 
==Reference==
<ref group="xtra">PMID:15288789</ref><references group="xtra"/>
[[Category: Thermoproteus tenax]]
[[Category: Thermoproteus tenax]]
[[Category: Hensel, R.]]
[[Category: Hensel R]]
[[Category: Lorentzen, E.]]
[[Category: Lorentzen E]]
[[Category: Pohl, E.]]
[[Category: Pohl E]]
[[Category: Adp]]
[[Category: Aldh]]
[[Category: Catalysis oxidoreductase]]
[[Category: Gapn]]
[[Category: Glycolysis]]
[[Category: Regulation]]
 
''Page seeded by [http://oca.weizmann.ac.il/oca OCA ] on Tue Feb 17 08:10:34 2009''

Latest revision as of 16:02, 13 December 2023

Structural basis for allosteric regulation and substrate specificity of the non-phosphorylating glyceraldehyde-3-phosphate dehydrogenase (GAPN) from Thermoproteus tenaxStructural basis for allosteric regulation and substrate specificity of the non-phosphorylating glyceraldehyde-3-phosphate dehydrogenase (GAPN) from Thermoproteus tenax

Structural highlights

1uxp is a 1 chain structure with sequence from Thermoproteus tenax. Full crystallographic information is available from OCA. For a guided tour on the structure components use FirstGlance.
Method:X-ray diffraction, Resolution 2.55Å
Ligands:, ,
Resources:FirstGlance, OCA, PDBe, RCSB, PDBsum, ProSAT

Function

GAPN_THETE Catalyzes the irreversible NAD(P)-dependent non-phosphorylating oxidation of glyceraldehyde-3-phosphate (GAP) to 3-phosphoglycerate (3PG). It is highly specific for D-GAP.[1] [2]

Evolutionary Conservation

Check, as determined by ConSurfDB. You may read the explanation of the method and the full data available from ConSurf.

Publication Abstract from PubMed

The non-phosphorylating glyceraldehyde-3-phosphate dehydrogenase (GAPN) of the hyperthermophilic Archaeum Thermoproteus tenax is a member of the superfamily of aldehyde dehydrogenases (ALDH). GAPN catalyses the irreversible oxidation of glyceraldehyde 3-phosphate (GAP) to 3-phosphoglycerate in the modified glycolytic pathway of this organism. In contrast to other members of the ALDH superfamily, GAPN from T.tenax (Tt-GAPN) is regulated by a number of intermediates and metabolites. In the NAD-dependent oxidation of GAP, glucose 1-phosphate, fructose 6-phosphate, AMP and ADP increase the affinity for the cosubstrate, whereas ATP, NADP, NADPH and NADH decrease it leaving, however, the catalytic rate virtually unaltered. As we show here, the enzyme also uses NADP as a cosubstrate, displaying, however, unusual discontinuous saturation kinetics indicating different cosubstrate affinities and/or reactivities of the four active sites of the protein tetramer caused by cooperative effects. Furthermore, in the NADP-dependent reaction the presence of activators decreases the overall S0.5 and increases Vmax by a factor of 3. To explore the structural basis for the different effects of both pyridine nucleotides we solved the crystal structure of Tt-GAPN in complex with NAD at 2.2 A resolution and compared it to the binary Tt-GAPN-NADPH structure. Although both pyridine nucleotides show a similar binding mode, NADPH appears to be more tightly bound to the protein via the 2' phosphate moiety. Moreover, we present four co-crystal structures with the activating molecules glucose 1-phosphate, fructose 6-phosphate, AMP and ADP determined at resolutions ranging from 2.3 A to 2.6 A. These crystal structures reveal a common regulatory site able to accommodate the different activators. A phosphate-binding pocket serves as an anchor point ensuring similar binding geometry. The observed conformational changes upon activator binding are discussed in terms of allosteric regulation. Furthermore, we present a crystal structure of Tt-GAPN in complex with the substrate D-GAP at 2.3 A resolution, which allows us to analyse the structural basis for substrate binding, the mechanism of catalysis as well as the stereoselectivity of the enzymatic reaction.

Structural Basis of allosteric regulation and substrate specificity of the non-phosphorylating glyceraldehyde 3-Phosphate dehydrogenase from Thermoproteus tenax.,Lorentzen E, Hensel R, Knura T, Ahmed H, Pohl E J Mol Biol. 2004 Aug 13;341(3):815-28. PMID:15288789[3]

From MEDLINE®/PubMed®, a database of the U.S. National Library of Medicine.

See Also

References

  1. Hensel R, Laumann S, Lang J, Heumann H, Lottspeich F. Characterization of two D-glyceraldehyde-3-phosphate dehydrogenases from the extremely thermophilic archaebacterium Thermoproteus tenax. Eur J Biochem. 1987 Dec 30;170(1-2):325-33. PMID:3121324
  2. Brunner NA, Brinkmann H, Siebers B, Hensel R. NAD+-dependent glyceraldehyde-3-phosphate dehydrogenase from Thermoproteus tenax. The first identified archaeal member of the aldehyde dehydrogenase superfamily is a glycolytic enzyme with unusual regulatory properties. J Biol Chem. 1998 Mar 13;273(11):6149-56. PMID:9497334
  3. Lorentzen E, Hensel R, Knura T, Ahmed H, Pohl E. Structural Basis of allosteric regulation and substrate specificity of the non-phosphorylating glyceraldehyde 3-Phosphate dehydrogenase from Thermoproteus tenax. J Mol Biol. 2004 Aug 13;341(3):815-28. PMID:15288789 doi:http://dx.doi.org/10.1016/j.jmb.2004.05.032

1uxp, resolution 2.55Å

Drag the structure with the mouse to rotate

Proteopedia Page Contributors and Editors (what is this?)Proteopedia Page Contributors and Editors (what is this?)

OCA