5oc8: Difference between revisions
No edit summary |
No edit summary |
||
Line 1: | Line 1: | ||
==HDM2 (17-111, WILD TYPE) COMPLEXED WITH NVP-HDM201 AT 1.56A== | ==HDM2 (17-111, WILD TYPE) COMPLEXED WITH NVP-HDM201 AT 1.56A== | ||
<StructureSection load='5oc8' size='340' side='right' caption='[[5oc8]], [[Resolution|resolution]] 1.56Å' scene=''> | <StructureSection load='5oc8' size='340' side='right'caption='[[5oc8]], [[Resolution|resolution]] 1.56Å' scene=''> | ||
== Structural highlights == | == Structural highlights == | ||
<table><tr><td colspan='2'>[[5oc8]] is a 1 chain structure with sequence from [ | <table><tr><td colspan='2'>[[5oc8]] is a 1 chain structure with sequence from [https://en.wikipedia.org/wiki/Homo_sapiens Homo sapiens]. Full crystallographic information is available from [http://oca.weizmann.ac.il/oca-bin/ocashort?id=5OC8 OCA]. For a <b>guided tour on the structure components</b> use [https://proteopedia.org/fgij/fg.htm?mol=5OC8 FirstGlance]. <br> | ||
</td></tr><tr id='ligand'><td class="sblockLbl"><b>[[Ligand|Ligands:]]</b></td><td class="sblockDat"><scene name='pdbligand=9QW:(4~{S})-5-(5-chloranyl-1-methyl-2-oxidanylidene-pyridin-3-yl)-4-(4-chlorophenyl)-2-(2,4-dimethoxypyrimidin-5-yl)-3-propan-2-yl-4~{H}-pyrrolo[3,4-d]imidazol-6-one'>9QW</scene>, <scene name='pdbligand=CL:CHLORIDE+ION'>CL</scene | </td></tr><tr id='method'><td class="sblockLbl"><b>[[Empirical_models|Method:]]</b></td><td class="sblockDat" id="methodDat">X-ray diffraction, [[Resolution|Resolution]] 1.56Å</td></tr> | ||
<tr id='ligand'><td class="sblockLbl"><b>[[Ligand|Ligands:]]</b></td><td class="sblockDat" id="ligandDat"><scene name='pdbligand=9QW:(4~{S})-5-(5-chloranyl-1-methyl-2-oxidanylidene-pyridin-3-yl)-4-(4-chlorophenyl)-2-(2,4-dimethoxypyrimidin-5-yl)-3-propan-2-yl-4~{H}-pyrrolo[3,4-d]imidazol-6-one'>9QW</scene>, <scene name='pdbligand=CL:CHLORIDE+ION'>CL</scene></td></tr> | |||
<tr id='resources'><td class="sblockLbl"><b>Resources:</b></td><td class="sblockDat"><span class='plainlinks'>[https://proteopedia.org/fgij/fg.htm?mol=5oc8 FirstGlance], [http://oca.weizmann.ac.il/oca-bin/ocaids?id=5oc8 OCA], [https://pdbe.org/5oc8 PDBe], [https://www.rcsb.org/pdb/explore.do?structureId=5oc8 RCSB], [https://www.ebi.ac.uk/pdbsum/5oc8 PDBsum], [https://prosat.h-its.org/prosat/prosatexe?pdbcode=5oc8 ProSAT]</span></td></tr> | |||
<tr id='resources'><td class="sblockLbl"><b>Resources:</b></td><td class="sblockDat"><span class='plainlinks'>[ | |||
</table> | </table> | ||
== Disease == | == Disease == | ||
[ | [https://www.uniprot.org/uniprot/MDM2_HUMAN MDM2_HUMAN] Note=Seems to be amplified in certain tumors (including soft tissue sarcomas, osteosarcomas and gliomas). A higher frequency of splice variants lacking p53 binding domain sequences was found in late-stage and high-grade ovarian and bladder carcinomas. Four of the splice variants show loss of p53 binding. | ||
== Function == | == Function == | ||
[ | [https://www.uniprot.org/uniprot/MDM2_HUMAN MDM2_HUMAN] E3 ubiquitin-protein ligase that mediates ubiquitination of p53/TP53, leading to its degradation by the proteasome. Inhibits p53/TP53- and p73/TP73-mediated cell cycle arrest and apoptosis by binding its transcriptional activation domain. Also acts as an ubiquitin ligase E3 toward itself and ARRB1. Permits the nuclear export of p53/TP53. Promotes proteasome-dependent ubiquitin-independent degradation of retinoblastoma RB1 protein. Inhibits DAXX-mediated apoptosis by inducing its ubiquitination and degradation. Component of the TRIM28/KAP1-MDM2-p53/TP53 complex involved in stabilizing p53/TP53. Also component of the TRIM28/KAP1-ERBB4-MDM2 complex which links growth factor and DNA damage response pathways. Mediates ubiquitination and subsequent proteasome degradation of DYRK2 in nucleus. Ubiquitinates IGF1R and promotes it to proteasomal degradation.<ref>PMID:12821780</ref> <ref>PMID:15053880</ref> <ref>PMID:15195100</ref> <ref>PMID:16337594</ref> <ref>PMID:15632057</ref> <ref>PMID:17290220</ref> <ref>PMID:19098711</ref> <ref>PMID:19219073</ref> <ref>PMID:19965871</ref> <ref>PMID:20858735</ref> <ref>PMID:20173098</ref> | ||
<div style="background-color:#fffaf0;"> | <div style="background-color:#fffaf0;"> | ||
== Publication Abstract from PubMed == | == Publication Abstract from PubMed == | ||
Line 23: | Line 21: | ||
</div> | </div> | ||
<div class="pdbe-citations 5oc8" style="background-color:#fffaf0;"></div> | <div class="pdbe-citations 5oc8" style="background-color:#fffaf0;"></div> | ||
==See Also== | |||
*[[MDM2 3D structures|MDM2 3D structures]] | |||
== References == | == References == | ||
<references/> | <references/> | ||
__TOC__ | __TOC__ | ||
</StructureSection> | </StructureSection> | ||
[[Category: | [[Category: Homo sapiens]] | ||
[[Category: | [[Category: Large Structures]] | ||
[[Category: Kallen | [[Category: Kallen J]] | ||
Latest revision as of 12:39, 6 December 2023
HDM2 (17-111, WILD TYPE) COMPLEXED WITH NVP-HDM201 AT 1.56AHDM2 (17-111, WILD TYPE) COMPLEXED WITH NVP-HDM201 AT 1.56A
Structural highlights
DiseaseMDM2_HUMAN Note=Seems to be amplified in certain tumors (including soft tissue sarcomas, osteosarcomas and gliomas). A higher frequency of splice variants lacking p53 binding domain sequences was found in late-stage and high-grade ovarian and bladder carcinomas. Four of the splice variants show loss of p53 binding. FunctionMDM2_HUMAN E3 ubiquitin-protein ligase that mediates ubiquitination of p53/TP53, leading to its degradation by the proteasome. Inhibits p53/TP53- and p73/TP73-mediated cell cycle arrest and apoptosis by binding its transcriptional activation domain. Also acts as an ubiquitin ligase E3 toward itself and ARRB1. Permits the nuclear export of p53/TP53. Promotes proteasome-dependent ubiquitin-independent degradation of retinoblastoma RB1 protein. Inhibits DAXX-mediated apoptosis by inducing its ubiquitination and degradation. Component of the TRIM28/KAP1-MDM2-p53/TP53 complex involved in stabilizing p53/TP53. Also component of the TRIM28/KAP1-ERBB4-MDM2 complex which links growth factor and DNA damage response pathways. Mediates ubiquitination and subsequent proteasome degradation of DYRK2 in nucleus. Ubiquitinates IGF1R and promotes it to proteasomal degradation.[1] [2] [3] [4] [5] [6] [7] [8] [9] [10] [11] Publication Abstract from PubMedActivation of p53 by inhibitors of the p53-MDM2 interaction is being pursued as a therapeutic strategy in p53 wild-type cancers. Here we report distinct mechanisms by which the novel, potent, and selective inhibitor of the p53-MDM2 interaction HDM201 elicits therapeutic efficacy when applied at various doses and schedules. Continuous exposure of HDM201 led to induction of p21 and delayed accumulation of apoptotic cells. By comparison, high dose pulses of HDM201 were associated with marked induction of PUMA and a rapid onset of apoptosis. shRNA screens identified PUMA as a mediator of the p53 response specifically in the pulsed regimen. Consistent with this, the single high dose HDM201 regimen resulted in rapid and marked induction of PUMA expression and apoptosis together with down-regulation of Bcl-xL in vivo. Knockdown of Bcl-xL was identified as the top sensitizer to HDM201 in vitro, and Bcl-xL was enriched in relapsing tumors from mice treated with intermittent high doses of HDM201. These findings define a regimen-dependent mechanism by which disruption of MDM2-p53 elicits therapeutic efficacy when given with infrequent dosing. In an ongoing HDM201 trial, the observed exposure-response relationship indicates that the molecular mechanism elicited by pulse dosing is likely reproducible in patients. These data support the clinical comparison of daily and intermittent regimens of p53-MDM2 inhibitors. Dose and schedule determine distinct molecular mechanisms underlying the efficacy of the p53-MDM2 inhibitor HDM201.,Jeay S, Ferretti S, Holzer P, Fuchs J, Chapeau EA, Wartmann M, Sterker D, Romanet V, Murakami M, Kerr G, Durand EY, Gaulis S, Cortes-Cros M, Ruetz S, Stachyra TM, Kallen J, Furet P, Wuerthner J, Guerreiro N, Halilovic E, Jullion A, Kauffmann A, Kuriakose E, Wiesmann M, Jensen MR, Hofmann F, Sellers WR Cancer Res. 2018 Aug 22. pii: 0008-5472.CAN-18-0338. doi:, 10.1158/0008-5472.CAN-18-0338. PMID:30135191[12] From MEDLINE®/PubMed®, a database of the U.S. National Library of Medicine. See AlsoReferences
|
|