3evv: Difference between revisions

From Proteopedia
Jump to navigation Jump to search
No edit summary
No edit summary
 
(8 intermediate revisions by the same user not shown)
Line 1: Line 1:
{{Seed}}
[[Image:3evv.png|left|200px]]


<!--
==Crystal Structure of Calcium bound dimeric GCAMP2 (#2)==
The line below this paragraph, containing "STRUCTURE_3evv", creates the "Structure Box" on the page.
<StructureSection load='3evv' size='340' side='right'caption='[[3evv]], [[Resolution|resolution]] 2.60&Aring;' scene=''>
You may change the PDB parameter (which sets the PDB file loaded into the applet)  
== Structural highlights ==
or the SCENE parameter (which sets the initial scene displayed when the page is loaded),
<table><tr><td colspan='2'>[[3evv]] is a 1 chain structure with sequence from [https://en.wikipedia.org/wiki/Aequorea_victoria Aequorea victoria] and [https://en.wikipedia.org/wiki/Homo_sapiens Homo sapiens]. Full crystallographic information is available from [http://oca.weizmann.ac.il/oca-bin/ocashort?id=3EVV OCA]. For a <b>guided tour on the structure components</b> use [https://proteopedia.org/fgij/fg.htm?mol=3EVV FirstGlance]. <br>
or leave the SCENE parameter empty for the default display.
</td></tr><tr id='method'><td class="sblockLbl"><b>[[Empirical_models|Method:]]</b></td><td class="sblockDat" id="methodDat">X-ray diffraction, [[Resolution|Resolution]] 2.6&#8491;</td></tr>
-->
<tr id='ligand'><td class="sblockLbl"><b>[[Ligand|Ligands:]]</b></td><td class="sblockDat" id="ligandDat"><scene name='pdbligand=CA:CALCIUM+ION'>CA</scene>, <scene name='pdbligand=CRO:{2-[(1R,2R)-1-AMINO-2-HYDROXYPROPYL]-4-(4-HYDROXYBENZYLIDENE)-5-OXO-4,5-DIHYDRO-1H-IMIDAZOL-1-YL}ACETIC+ACID'>CRO</scene></td></tr>
{{STRUCTURE_3evv|  PDB=3evv  |  SCENE=  }}
<tr id='resources'><td class="sblockLbl"><b>Resources:</b></td><td class="sblockDat"><span class='plainlinks'>[https://proteopedia.org/fgij/fg.htm?mol=3evv FirstGlance], [http://oca.weizmann.ac.il/oca-bin/ocaids?id=3evv OCA], [https://pdbe.org/3evv PDBe], [https://www.rcsb.org/pdb/explore.do?structureId=3evv RCSB], [https://www.ebi.ac.uk/pdbsum/3evv PDBsum], [https://prosat.h-its.org/prosat/prosatexe?pdbcode=3evv ProSAT]</span></td></tr>
</table>
== Disease ==
[https://www.uniprot.org/uniprot/CALM1_HUMAN CALM1_HUMAN] The disease is caused by mutations affecting the gene represented in this entry. Mutations in CALM1 are the cause of CPVT4.  The disease is caused by mutations affecting the gene represented in this entry. Mutations in CALM1 are the cause of LQT14.
== Function ==
[https://www.uniprot.org/uniprot/CALM1_HUMAN CALM1_HUMAN] Calmodulin mediates the control of a large number of enzymes, ion channels, aquaporins and other proteins through calcium-binding. Among the enzymes to be stimulated by the calmodulin-calcium complex are a number of protein kinases and phosphatases. Together with CCP110 and centrin, is involved in a genetic pathway that regulates the centrosome cycle and progression through cytokinesis (PubMed:16760425). Mediates calcium-dependent inactivation of CACNA1C (PubMed:26969752). Positively regulates calcium-activated potassium channel activity of KCNN2 (PubMed:27165696).<ref>PMID:16760425</ref> <ref>PMID:23893133</ref> <ref>PMID:26969752</ref> <ref>PMID:27165696</ref> [https://www.uniprot.org/uniprot/MYLK_CHICK MYLK_CHICK] Phosphorylates a specific serine in the N-terminus of a myosin light chain, which leads to the formation of calmodulin/MLCK signal transduction complexes which allow selective transduction of calcium signals.[https://www.uniprot.org/uniprot/GFP_AEQVI GFP_AEQVI] Energy-transfer acceptor. Its role is to transduce the blue chemiluminescence of the protein aequorin into green fluorescent light by energy transfer. Fluoresces in vivo upon receiving energy from the Ca(2+)-activated photoprotein aequorin.
<div style="background-color:#fffaf0;">
== Publication Abstract from PubMed ==
Genetically encoded Ca(2+) indicators are important tools that enable the measurement of Ca(2+) dynamics in a physiologically relevant context. GCaMP2, one of the most robust indicators, is a circularly permutated EGFP (cpEGFP)/M13/calmodulin (CaM) fusion protein that has been successfully used for studying Ca(2+) fluxes in vivo in the heart and vasculature of transgenic mice. Here we describe crystal structures of bright and dim states of GCaMP2 that reveal a sophisticated molecular mechanism for Ca(2+) sensing. In the bright state, CaM stabilizes the fluorophore in an ionized state similar to that observed in EGFP. Mutational analysis confirmed critical interactions between the fluorophore and elements of the fused peptides. Solution scattering studies indicate that the Ca(2+)-free form of GCaMP2 is a compact, predocked state, suggesting a molecular basis for the relatively rapid signaling kinetics reported for this indicator. These studies provide a structural basis for the rational design of improved Ca(2+)-sensitive probes.


===Crystal Structure of Calcium bound dimeric GCAMP2 (#2)===
Structural Basis for Calcium Sensing by GCaMP2.,Wang Q, Shui B, Kotlikoff MI, Sondermann H Structure. 2008 Dec 12;16(12):1817-27. PMID:19081058<ref>PMID:19081058</ref>


From MEDLINE&reg;/PubMed&reg;, a database of the U.S. National Library of Medicine.<br>
</div>
<div class="pdbe-citations 3evv" style="background-color:#fffaf0;"></div>


<!--
==See Also==
The line below this paragraph, {{ABSTRACT_PUBMED_19081058}}, adds the Publication Abstract to the page
*[[Calmodulin 3D structures|Calmodulin 3D structures]]
(as it appears on PubMed at http://www.pubmed.gov), where 19081058 is the PubMed ID number.
*[[Green Fluorescent Protein 3D structures|Green Fluorescent Protein 3D structures]]
-->
== References ==
{{ABSTRACT_PUBMED_19081058}}
<references/>
 
__TOC__
==About this Structure==
</StructureSection>
3EVV is a 1 chain structure with sequence from [http://en.wikipedia.org/wiki/Aequorea_victoria Aequorea victoria]. Full crystallographic information is available from [http://oca.weizmann.ac.il/oca-bin/ocashort?id=3EVV OCA].
 
==Reference==
<ref group="xtra">PMID:19081058</ref><references group="xtra"/>
[[Category: Aequorea victoria]]
[[Category: Aequorea victoria]]
[[Category: Kotlikoff,M I.]]
[[Category: Homo sapiens]]
[[Category: Shui,B.]]
[[Category: Large Structures]]
[[Category: Sondermann,H.]]
[[Category: Kotlikoff MI]]
[[Category: Wang,Q.]]
[[Category: Shui B]]
[[Category: Calcium sensor]]
[[Category: Sondermann H]]
[[Category: Calmodulin]]
[[Category: Wang Q]]
[[Category: Gcamp2]]
[[Category: Gfp]]
[[Category: M13]]
[[Category: Signaling protein]]
 
''Page seeded by [http://oca.weizmann.ac.il/oca OCA ] on Wed Sep 22 11:49:29 2010''

Latest revision as of 21:58, 29 November 2023

Crystal Structure of Calcium bound dimeric GCAMP2 (#2)Crystal Structure of Calcium bound dimeric GCAMP2 (#2)

Structural highlights

3evv is a 1 chain structure with sequence from Aequorea victoria and Homo sapiens. Full crystallographic information is available from OCA. For a guided tour on the structure components use FirstGlance.
Method:X-ray diffraction, Resolution 2.6Å
Ligands:,
Resources:FirstGlance, OCA, PDBe, RCSB, PDBsum, ProSAT

Disease

CALM1_HUMAN The disease is caused by mutations affecting the gene represented in this entry. Mutations in CALM1 are the cause of CPVT4. The disease is caused by mutations affecting the gene represented in this entry. Mutations in CALM1 are the cause of LQT14.

Function

CALM1_HUMAN Calmodulin mediates the control of a large number of enzymes, ion channels, aquaporins and other proteins through calcium-binding. Among the enzymes to be stimulated by the calmodulin-calcium complex are a number of protein kinases and phosphatases. Together with CCP110 and centrin, is involved in a genetic pathway that regulates the centrosome cycle and progression through cytokinesis (PubMed:16760425). Mediates calcium-dependent inactivation of CACNA1C (PubMed:26969752). Positively regulates calcium-activated potassium channel activity of KCNN2 (PubMed:27165696).[1] [2] [3] [4] MYLK_CHICK Phosphorylates a specific serine in the N-terminus of a myosin light chain, which leads to the formation of calmodulin/MLCK signal transduction complexes which allow selective transduction of calcium signals.GFP_AEQVI Energy-transfer acceptor. Its role is to transduce the blue chemiluminescence of the protein aequorin into green fluorescent light by energy transfer. Fluoresces in vivo upon receiving energy from the Ca(2+)-activated photoprotein aequorin.

Publication Abstract from PubMed

Genetically encoded Ca(2+) indicators are important tools that enable the measurement of Ca(2+) dynamics in a physiologically relevant context. GCaMP2, one of the most robust indicators, is a circularly permutated EGFP (cpEGFP)/M13/calmodulin (CaM) fusion protein that has been successfully used for studying Ca(2+) fluxes in vivo in the heart and vasculature of transgenic mice. Here we describe crystal structures of bright and dim states of GCaMP2 that reveal a sophisticated molecular mechanism for Ca(2+) sensing. In the bright state, CaM stabilizes the fluorophore in an ionized state similar to that observed in EGFP. Mutational analysis confirmed critical interactions between the fluorophore and elements of the fused peptides. Solution scattering studies indicate that the Ca(2+)-free form of GCaMP2 is a compact, predocked state, suggesting a molecular basis for the relatively rapid signaling kinetics reported for this indicator. These studies provide a structural basis for the rational design of improved Ca(2+)-sensitive probes.

Structural Basis for Calcium Sensing by GCaMP2.,Wang Q, Shui B, Kotlikoff MI, Sondermann H Structure. 2008 Dec 12;16(12):1817-27. PMID:19081058[5]

From MEDLINE®/PubMed®, a database of the U.S. National Library of Medicine.

See Also

References

  1. Tsang WY, Spektor A, Luciano DJ, Indjeian VB, Chen Z, Salisbury JL, Sanchez I, Dynlacht BD. CP110 cooperates with two calcium-binding proteins to regulate cytokinesis and genome stability. Mol Biol Cell. 2006 Aug;17(8):3423-34. Epub 2006 Jun 7. PMID:16760425 doi:10.1091/mbc.E06-04-0371
  2. Reichow SL, Clemens DM, Freites JA, Nemeth-Cahalan KL, Heyden M, Tobias DJ, Hall JE, Gonen T. Allosteric mechanism of water-channel gating by Ca-calmodulin. Nat Struct Mol Biol. 2013 Jul 28. doi: 10.1038/nsmb.2630. PMID:23893133 doi:10.1038/nsmb.2630
  3. Boczek NJ, Gomez-Hurtado N, Ye D, Calvert ML, Tester DJ, Kryshtal D, Hwang HS, Johnson CN, Chazin WJ, Loporcaro CG, Shah M, Papez AL, Lau YR, Kanter R, Knollmann BC, Ackerman MJ. Spectrum and Prevalence of CALM1-, CALM2-, and CALM3-Encoded Calmodulin Variants in Long QT Syndrome and Functional Characterization of a Novel Long QT Syndrome-Associated Calmodulin Missense Variant, E141G. Circ Cardiovasc Genet. 2016 Apr;9(2):136-146. doi:, 10.1161/CIRCGENETICS.115.001323. Epub 2016 Mar 11. PMID:26969752 doi:http://dx.doi.org/10.1161/CIRCGENETICS.115.001323
  4. Yu CC, Ko JS, Ai T, Tsai WC, Chen Z, Rubart M, Vatta M, Everett TH 4th, George AL Jr, Chen PS. Arrhythmogenic calmodulin mutations impede activation of small-conductance calcium-activated potassium current. Heart Rhythm. 2016 Aug;13(8):1716-23. doi: 10.1016/j.hrthm.2016.05.009. Epub 2016, May 7. PMID:27165696 doi:http://dx.doi.org/10.1016/j.hrthm.2016.05.009
  5. Wang Q, Shui B, Kotlikoff MI, Sondermann H. Structural Basis for Calcium Sensing by GCaMP2. Structure. 2008 Dec 12;16(12):1817-27. PMID:19081058 doi:S0969-2126(08)00413-9

3evv, resolution 2.60Å

Drag the structure with the mouse to rotate

Proteopedia Page Contributors and Editors (what is this?)Proteopedia Page Contributors and Editors (what is this?)

OCA