3evu: Difference between revisions

From Proteopedia
Jump to navigation Jump to search
No edit summary
No edit summary
 
(10 intermediate revisions by the same user not shown)
Line 1: Line 1:
{{Seed}}
[[Image:3evu.jpg|left|200px]]


<!--
==Crystal structure of Calcium bound dimeric GCAMP2==
The line below this paragraph, containing "STRUCTURE_3evu", creates the "Structure Box" on the page.
<StructureSection load='3evu' size='340' side='right'caption='[[3evu]], [[Resolution|resolution]] 1.75&Aring;' scene=''>
You may change the PDB parameter (which sets the PDB file loaded into the applet)  
== Structural highlights ==
or the SCENE parameter (which sets the initial scene displayed when the page is loaded),
<table><tr><td colspan='2'>[[3evu]] is a 1 chain structure with sequence from [https://en.wikipedia.org/wiki/Aequorea_victoria Aequorea victoria], [https://en.wikipedia.org/wiki/Gallus_gallus Gallus gallus] and [https://en.wikipedia.org/wiki/Rattus_norvegicus Rattus norvegicus]. Full crystallographic information is available from [http://oca.weizmann.ac.il/oca-bin/ocashort?id=3EVU OCA]. For a <b>guided tour on the structure components</b> use [https://proteopedia.org/fgij/fg.htm?mol=3EVU FirstGlance]. <br>
or leave the SCENE parameter empty for the default display.
</td></tr><tr id='method'><td class="sblockLbl"><b>[[Empirical_models|Method:]]</b></td><td class="sblockDat" id="methodDat">X-ray diffraction, [[Resolution|Resolution]] 1.75&#8491;</td></tr>
-->
<tr id='ligand'><td class="sblockLbl"><b>[[Ligand|Ligands:]]</b></td><td class="sblockDat" id="ligandDat"><scene name='pdbligand=CA:CALCIUM+ION'>CA</scene>, <scene name='pdbligand=CRO:{2-[(1R,2R)-1-AMINO-2-HYDROXYPROPYL]-4-(4-HYDROXYBENZYLIDENE)-5-OXO-4,5-DIHYDRO-1H-IMIDAZOL-1-YL}ACETIC+ACID'>CRO</scene></td></tr>
{{STRUCTURE_3evu|  PDB=3evu  |  SCENE=  }}
<tr id='resources'><td class="sblockLbl"><b>Resources:</b></td><td class="sblockDat"><span class='plainlinks'>[https://proteopedia.org/fgij/fg.htm?mol=3evu FirstGlance], [http://oca.weizmann.ac.il/oca-bin/ocaids?id=3evu OCA], [https://pdbe.org/3evu PDBe], [https://www.rcsb.org/pdb/explore.do?structureId=3evu RCSB], [https://www.ebi.ac.uk/pdbsum/3evu PDBsum], [https://prosat.h-its.org/prosat/prosatexe?pdbcode=3evu ProSAT]</span></td></tr>
</table>
== Function ==
[https://www.uniprot.org/uniprot/CALM1_RAT CALM1_RAT] Calmodulin mediates the control of a large number of enzymes, ion channels, aquaporins and other proteins through calcium-binding. Among the enzymes to be stimulated by the calmodulin-calcium complex are a number of protein kinases and phosphatases. Together with CCP110 and centrin, is involved in a genetic pathway that regulates the centrosome cycle and progression through cytokinesis. Mediates calcium-dependent inactivation of CACNA1C. Positively regulates calcium-activated potassium channel activity of KCNN2.[UniProtKB:P62158][https://www.uniprot.org/uniprot/MYLK_CHICK MYLK_CHICK] Phosphorylates a specific serine in the N-terminus of a myosin light chain, which leads to the formation of calmodulin/MLCK signal transduction complexes which allow selective transduction of calcium signals.[https://www.uniprot.org/uniprot/GFP_AEQVI GFP_AEQVI] Energy-transfer acceptor. Its role is to transduce the blue chemiluminescence of the protein aequorin into green fluorescent light by energy transfer. Fluoresces in vivo upon receiving energy from the Ca(2+)-activated photoprotein aequorin.
<div style="background-color:#fffaf0;">
== Publication Abstract from PubMed ==
Genetically encoded Ca(2+) indicators are important tools that enable the measurement of Ca(2+) dynamics in a physiologically relevant context. GCaMP2, one of the most robust indicators, is a circularly permutated EGFP (cpEGFP)/M13/calmodulin (CaM) fusion protein that has been successfully used for studying Ca(2+) fluxes in vivo in the heart and vasculature of transgenic mice. Here we describe crystal structures of bright and dim states of GCaMP2 that reveal a sophisticated molecular mechanism for Ca(2+) sensing. In the bright state, CaM stabilizes the fluorophore in an ionized state similar to that observed in EGFP. Mutational analysis confirmed critical interactions between the fluorophore and elements of the fused peptides. Solution scattering studies indicate that the Ca(2+)-free form of GCaMP2 is a compact, predocked state, suggesting a molecular basis for the relatively rapid signaling kinetics reported for this indicator. These studies provide a structural basis for the rational design of improved Ca(2+)-sensitive probes.


===Crystal structure of Calcium bound dimeric GCAMP2, (#1)===
Structural Basis for Calcium Sensing by GCaMP2.,Wang Q, Shui B, Kotlikoff MI, Sondermann H Structure. 2008 Dec 12;16(12):1817-27. PMID:19081058<ref>PMID:19081058</ref>


From MEDLINE&reg;/PubMed&reg;, a database of the U.S. National Library of Medicine.<br>
</div>
<div class="pdbe-citations 3evu" style="background-color:#fffaf0;"></div>


==About this Structure==
==See Also==
3EVU is a 1 chain structure of sequence from [http://en.wikipedia.org/wiki/Aequorea_victoria Aequorea victoria]. Full crystallographic information is available from [http://oca.weizmann.ac.il/oca-bin/ocashort?id=3EVU OCA].
*[[Calmodulin 3D structures|Calmodulin 3D structures]]
*[[Green Fluorescent Protein 3D structures|Green Fluorescent Protein 3D structures]]
== References ==
<references/>
__TOC__
</StructureSection>
[[Category: Aequorea victoria]]
[[Category: Aequorea victoria]]
[[Category: Kotlikoff,M I.]]
[[Category: Gallus gallus]]
[[Category: Shui,B.]]
[[Category: Large Structures]]
[[Category: Sondermann,H.]]
[[Category: Rattus norvegicus]]
[[Category: Wang,Q.]]
[[Category: Kotlikoff MI]]
[[Category: Calcium sensor]]
[[Category: Shui B]]
[[Category: Calmodulin]]
[[Category: Sondermann H]]
[[Category: Gcamp2]]
[[Category: Wang Q]]
[[Category: Gfp]]
[[Category: M13]]
[[Category: Signaling protein]]
 
''Page seeded by [http://oca.weizmann.ac.il/oca OCA ] on Wed Dec 10 15:07:42 2008''

Latest revision as of 21:58, 29 November 2023

Crystal structure of Calcium bound dimeric GCAMP2Crystal structure of Calcium bound dimeric GCAMP2

Structural highlights

3evu is a 1 chain structure with sequence from Aequorea victoria, Gallus gallus and Rattus norvegicus. Full crystallographic information is available from OCA. For a guided tour on the structure components use FirstGlance.
Method:X-ray diffraction, Resolution 1.75Å
Ligands:,
Resources:FirstGlance, OCA, PDBe, RCSB, PDBsum, ProSAT

Function

CALM1_RAT Calmodulin mediates the control of a large number of enzymes, ion channels, aquaporins and other proteins through calcium-binding. Among the enzymes to be stimulated by the calmodulin-calcium complex are a number of protein kinases and phosphatases. Together with CCP110 and centrin, is involved in a genetic pathway that regulates the centrosome cycle and progression through cytokinesis. Mediates calcium-dependent inactivation of CACNA1C. Positively regulates calcium-activated potassium channel activity of KCNN2.[UniProtKB:P62158]MYLK_CHICK Phosphorylates a specific serine in the N-terminus of a myosin light chain, which leads to the formation of calmodulin/MLCK signal transduction complexes which allow selective transduction of calcium signals.GFP_AEQVI Energy-transfer acceptor. Its role is to transduce the blue chemiluminescence of the protein aequorin into green fluorescent light by energy transfer. Fluoresces in vivo upon receiving energy from the Ca(2+)-activated photoprotein aequorin.

Publication Abstract from PubMed

Genetically encoded Ca(2+) indicators are important tools that enable the measurement of Ca(2+) dynamics in a physiologically relevant context. GCaMP2, one of the most robust indicators, is a circularly permutated EGFP (cpEGFP)/M13/calmodulin (CaM) fusion protein that has been successfully used for studying Ca(2+) fluxes in vivo in the heart and vasculature of transgenic mice. Here we describe crystal structures of bright and dim states of GCaMP2 that reveal a sophisticated molecular mechanism for Ca(2+) sensing. In the bright state, CaM stabilizes the fluorophore in an ionized state similar to that observed in EGFP. Mutational analysis confirmed critical interactions between the fluorophore and elements of the fused peptides. Solution scattering studies indicate that the Ca(2+)-free form of GCaMP2 is a compact, predocked state, suggesting a molecular basis for the relatively rapid signaling kinetics reported for this indicator. These studies provide a structural basis for the rational design of improved Ca(2+)-sensitive probes.

Structural Basis for Calcium Sensing by GCaMP2.,Wang Q, Shui B, Kotlikoff MI, Sondermann H Structure. 2008 Dec 12;16(12):1817-27. PMID:19081058[1]

From MEDLINE®/PubMed®, a database of the U.S. National Library of Medicine.

See Also

References

  1. Wang Q, Shui B, Kotlikoff MI, Sondermann H. Structural Basis for Calcium Sensing by GCaMP2. Structure. 2008 Dec 12;16(12):1817-27. PMID:19081058 doi:S0969-2126(08)00413-9

3evu, resolution 1.75Å

Drag the structure with the mouse to rotate

Proteopedia Page Contributors and Editors (what is this?)Proteopedia Page Contributors and Editors (what is this?)

OCA