7y4t: Difference between revisions

No edit summary
No edit summary
 
(One intermediate revision by the same user not shown)
Line 1: Line 1:
'''Unreleased structure'''


The entry 7y4t is ON HOLD until Paper Publication
==Crystal structure of cMET kinase domain bound by compound 9I==
<StructureSection load='7y4t' size='340' side='right'caption='[[7y4t]], [[Resolution|resolution]] 2.16&Aring;' scene=''>
== Structural highlights ==
<table><tr><td colspan='2'>[[7y4t]] is a 1 chain structure with sequence from [https://en.wikipedia.org/wiki/Homo_sapiens Homo sapiens]. Full crystallographic information is available from [http://oca.weizmann.ac.il/oca-bin/ocashort?id=7Y4T OCA]. For a <b>guided tour on the structure components</b> use [https://proteopedia.org/fgij/fg.htm?mol=7Y4T FirstGlance]. <br>
</td></tr><tr id='method'><td class="sblockLbl"><b>[[Empirical_models|Method:]]</b></td><td class="sblockDat" id="methodDat">X-ray diffraction, [[Resolution|Resolution]] 2.16&#8491;</td></tr>
<tr id='ligand'><td class="sblockLbl"><b>[[Ligand|Ligands:]]</b></td><td class="sblockDat" id="ligandDat"><scene name='pdbligand=I90:2-[2-[3-(1-methylpyrazol-4-yl)quinolin-6-yl]ethyl]-6-(3-nitrophenyl)pyridazin-3-one'>I90</scene></td></tr>
<tr id='resources'><td class="sblockLbl"><b>Resources:</b></td><td class="sblockDat"><span class='plainlinks'>[https://proteopedia.org/fgij/fg.htm?mol=7y4t FirstGlance], [http://oca.weizmann.ac.il/oca-bin/ocaids?id=7y4t OCA], [https://pdbe.org/7y4t PDBe], [https://www.rcsb.org/pdb/explore.do?structureId=7y4t RCSB], [https://www.ebi.ac.uk/pdbsum/7y4t PDBsum], [https://prosat.h-its.org/prosat/prosatexe?pdbcode=7y4t ProSAT]</span></td></tr>
</table>
== Disease ==
[https://www.uniprot.org/uniprot/MET_HUMAN MET_HUMAN] Note=Activation of MET after rearrangement with the TPR gene produces an oncogenic protein.  Note=Defects in MET may be associated with gastric cancer.  Defects in MET are a cause of hepatocellular carcinoma (HCC) [MIM:[https://omim.org/entry/114550 114550].<ref>PMID:9927037</ref>  Defects in MET are a cause of renal cell carcinoma papillary (RCCP) [MIM:[https://omim.org/entry/605074 605074]. It is a subtype of renal cell carcinoma tending to show a tubulo-papillary architecture formed by numerous, irregular, finger-like projections of connective tissue. Renal cell carcinoma is a heterogeneous group of sporadic or hereditary carcinoma derived from cells of the proximal renal tubular epithelium. It is subclassified into common renal cell carcinoma (clear cell, non-papillary carcinoma), papillary renal cell carcinoma, chromophobe renal cell carcinoma, collecting duct carcinoma with medullary carcinoma of the kidney, and unclassified renal cell carcinoma.<ref>PMID:9140397</ref> <ref>PMID:9563489</ref> <ref>PMID:10433944</ref> <ref>PMID:10417759</ref> <ref>PMID:10327054</ref>  Note=A common allele in the promoter region of the MET shows genetic association with susceptibility to autism in some families. Functional assays indicate a decrease in MET promoter activity and altered binding of specific transcription factor complexes. Note=MET activating mutations may be involved in the development of a highly malignant, metastatic syndrome known as cancer of unknown primary origin (CUP) or primary occult malignancy. Systemic neoplastic spread is generally a late event in cancer progression. However, in some instances, distant dissemination arises at a very early stage, so that metastases reach clinical relevance before primary lesions. Sometimes, the primary lesions cannot be identified in spite of the progresses in the diagnosis of malignancies.<ref>PMID:20949619</ref>
== Function ==
[https://www.uniprot.org/uniprot/MET_HUMAN MET_HUMAN] Receptor tyrosine kinase that transduces signals from the extracellular matrix into the cytoplasm by binding to hepatocyte growth factor/HGF ligand. Regulates many physiological processes including proliferation, scattering, morphogenesis and survival. Ligand binding at the cell surface induces autophosphorylation of MET on its intracellular domain that provides docking sites for downstream signaling molecules. Following activation by ligand, interacts with the PI3-kinase subunit PIK3R1, PLCG1, SRC, GRB2, STAT3 or the adapter GAB1. Recruitment of these downstream effectors by MET leads to the activation of several signaling cascades including the RAS-ERK, PI3 kinase-AKT, or PLCgamma-PKC. The RAS-ERK activation is associated with the morphogenetic effects while PI3K/AKT coordinates prosurvival effects. During embryonic development, MET signaling plays a role in gastrulation, development and migration of muscles and neuronal precursors, angiogenesis and kidney formation. In adults, participates in wound healing as well as organ regeneration and tissue remodeling. Promotes also differentiation and proliferation of hematopoietic cells.<ref>PMID:1846706</ref> <ref>PMID:8182137</ref> <ref>PMID:15314156</ref>  Acts as a receptor for Listeria internalin inlB, mediating entry of the pathogen into cells.<ref>PMID:1846706</ref> <ref>PMID:8182137</ref> <ref>PMID:15314156</ref>
<div style="background-color:#fffaf0;">
== Publication Abstract from PubMed ==
MET alterations have been validated as a driven factor in NSCLC and gastric cancers. The c-Met inhibitors, capmatinib, tepotinib, and savolitinib, are only approved for the treatment of NSCLC harboring exon 14 skipping mutant MET. We used a molecular hybridization in conjunction with macrocyclization strategy for structural optimization to obtain a series of 2-(2-(quinolin-6-yl)ethyl)pyridazin-3(2H)-one derivatives as new c-Met inhibitors. One of the macrocyclic compounds, D6808, potently inhibited c-Met kinase and MET-amplified Hs746T gastric cancer cells with IC(50) values of 2.9 and 0.7 nM, respectively. It also strongly suppressed Ba/F3-Tpr-Met cells harboring resistance-relevant mutations (F1200L/M1250T/H1094Y/F1200I/L1195V) with IC(50) values of 4.2, 3.2, 1.0, 39.0, and 33.4 nM, respectively. Furthermore, D6808 exhibited extraordinary target specificity in a Kinome profiling against 373 wild-type kinases and served as a promising macrocycle-based compound for further anticancer drug development.


Authors: Qu, L.Z., Chen, Y.H.
Discovery of D6808, a Highly Selective and Potent Macrocyclic c-Met Inhibitor for Gastric Cancer Harboring MET Gene Alteration Treatment.,Wang C, Li J, Qu L, Tang X, Song X, Yang F, Chen X, Lin Q, Lin W, Zhou Y, Tu Z, Chen Y, Zhang Z, Lu X J Med Chem. 2022 Nov 10. doi: 10.1021/acs.jmedchem.2c00981. PMID:36355693<ref>PMID:36355693</ref>


Description: Crystal structure of cMET kinase domain bound by compound 9I
From MEDLINE&reg;/PubMed&reg;, a database of the U.S. National Library of Medicine.<br>
[[Category: Unreleased Structures]]
</div>
[[Category: Qu, L.Z]]
<div class="pdbe-citations 7y4t" style="background-color:#fffaf0;"></div>
[[Category: Chen, Y.H]]
 
==See Also==
*[[Hepatocyte growth factor receptor 3D structures|Hepatocyte growth factor receptor 3D structures]]
== References ==
<references/>
__TOC__
</StructureSection>
[[Category: Homo sapiens]]
[[Category: Large Structures]]
[[Category: Chen YH]]
[[Category: Qu LZ]]

Proteopedia Page Contributors and Editors (what is this?)Proteopedia Page Contributors and Editors (what is this?)

OCA