7ei4: Difference between revisions
No edit summary |
No edit summary |
||
(One intermediate revision by the same user not shown) | |||
Line 1: | Line 1: | ||
==Crystal structure of MasL in complex with a novel covalent inhibitor, collimonin C== | ==Crystal structure of MasL in complex with a novel covalent inhibitor, collimonin C== | ||
<StructureSection load='7ei4' size='340' side='right'caption='[[7ei4]]' scene=''> | <StructureSection load='7ei4' size='340' side='right'caption='[[7ei4]], [[Resolution|resolution]] 1.66Å' scene=''> | ||
== Structural highlights == | == Structural highlights == | ||
<table><tr><td colspan='2'>Full crystallographic information is available from [http://oca.weizmann.ac.il/oca-bin/ocashort?id=7EI4 OCA]. For a <b>guided tour on the structure components</b> use [https://proteopedia.org/fgij/fg.htm?mol=7EI4 FirstGlance]. <br> | <table><tr><td colspan='2'>[[7ei4]] is a 4 chain structure with sequence from [https://en.wikipedia.org/wiki/Empedobacter_haloabium Empedobacter haloabium]. Full crystallographic information is available from [http://oca.weizmann.ac.il/oca-bin/ocashort?id=7EI4 OCA]. For a <b>guided tour on the structure components</b> use [https://proteopedia.org/fgij/fg.htm?mol=7EI4 FirstGlance]. <br> | ||
</td></tr><tr id='resources'><td class="sblockLbl"><b>Resources:</b></td><td class="sblockDat"><span class='plainlinks'>[https://proteopedia.org/fgij/fg.htm?mol=7ei4 FirstGlance], [http://oca.weizmann.ac.il/oca-bin/ocaids?id=7ei4 OCA], [https://pdbe.org/7ei4 PDBe], [https://www.rcsb.org/pdb/explore.do?structureId=7ei4 RCSB], [https://www.ebi.ac.uk/pdbsum/7ei4 PDBsum], [https://prosat.h-its.org/prosat/prosatexe?pdbcode=7ei4 ProSAT]</span></td></tr> | </td></tr><tr id='method'><td class="sblockLbl"><b>[[Empirical_models|Method:]]</b></td><td class="sblockDat" id="methodDat">X-ray diffraction, [[Resolution|Resolution]] 1.66Å</td></tr> | ||
<tr id='ligand'><td class="sblockLbl"><b>[[Ligand|Ligands:]]</b></td><td class="sblockDat" id="ligandDat"><scene name='pdbligand=J3U:(6S,7R,9E)-6,7-bis(oxidanyl)hexadeca-9,15-dien-11,13-diynoic+acid'>J3U</scene></td></tr> | |||
<tr id='resources'><td class="sblockLbl"><b>Resources:</b></td><td class="sblockDat"><span class='plainlinks'>[https://proteopedia.org/fgij/fg.htm?mol=7ei4 FirstGlance], [http://oca.weizmann.ac.il/oca-bin/ocaids?id=7ei4 OCA], [https://pdbe.org/7ei4 PDBe], [https://www.rcsb.org/pdb/explore.do?structureId=7ei4 RCSB], [https://www.ebi.ac.uk/pdbsum/7ei4 PDBsum], [https://prosat.h-its.org/prosat/prosatexe?pdbcode=7ei4 ProSAT]</span></td></tr> | |||
</table> | </table> | ||
<div style="background-color:#fffaf0;"> | |||
== Publication Abstract from PubMed == | |||
Bacterial polyynes are highly active natural products with a broad spectrum of antimicrobial activities. However, their detailed mechanism of action remains unclear. By integrating comparative genomics, transcriptomics, functional genetics, and metabolomics analysis, we identified a unique polyyne resistance gene, masL (encoding acetyl-CoA acetyltransferase), in the biosynthesis gene cluster of antifungal polyynes (massilin A 1, massilin B 2, collimonin C 3, and collimonin D 4) of Massilia sp. YMA4. Crystallographic analysis indicated that bacterial polyynes serve as covalent inhibitors of acetyl-CoA acetyltransferase. Moreover, we confirmed that the bacterial polyynes disrupted cell membrane integrity and inhibited the cell viability of Candida albicans by targeting ERG10, the homolog of MasL. Thus, this study demonstrated that acetyl-CoA acetyltransferase is a potential target for developing antifungal agents. | |||
Integrated omics approach to unveil antifungal bacterial polyynes as acetyl-CoA acetyltransferase inhibitors.,Lin CC, Hoo SY, Ma LT, Lin C, Huang KF, Ho YN, Sun CH, Lee HJ, Chen PY, Shu LJ, Wang BW, Hsu WC, Ko TP, Yang YL Commun Biol. 2022 May 12;5(1):454. doi: 10.1038/s42003-022-03409-6. PMID:35551233<ref>PMID:35551233</ref> | |||
From MEDLINE®/PubMed®, a database of the U.S. National Library of Medicine.<br> | |||
</div> | |||
<div class="pdbe-citations 7ei4" style="background-color:#fffaf0;"></div> | |||
== References == | |||
<references/> | |||
__TOC__ | __TOC__ | ||
</StructureSection> | </StructureSection> |
Latest revision as of 19:54, 29 November 2023
Crystal structure of MasL in complex with a novel covalent inhibitor, collimonin CCrystal structure of MasL in complex with a novel covalent inhibitor, collimonin C
Structural highlights
Publication Abstract from PubMedBacterial polyynes are highly active natural products with a broad spectrum of antimicrobial activities. However, their detailed mechanism of action remains unclear. By integrating comparative genomics, transcriptomics, functional genetics, and metabolomics analysis, we identified a unique polyyne resistance gene, masL (encoding acetyl-CoA acetyltransferase), in the biosynthesis gene cluster of antifungal polyynes (massilin A 1, massilin B 2, collimonin C 3, and collimonin D 4) of Massilia sp. YMA4. Crystallographic analysis indicated that bacterial polyynes serve as covalent inhibitors of acetyl-CoA acetyltransferase. Moreover, we confirmed that the bacterial polyynes disrupted cell membrane integrity and inhibited the cell viability of Candida albicans by targeting ERG10, the homolog of MasL. Thus, this study demonstrated that acetyl-CoA acetyltransferase is a potential target for developing antifungal agents. Integrated omics approach to unveil antifungal bacterial polyynes as acetyl-CoA acetyltransferase inhibitors.,Lin CC, Hoo SY, Ma LT, Lin C, Huang KF, Ho YN, Sun CH, Lee HJ, Chen PY, Shu LJ, Wang BW, Hsu WC, Ko TP, Yang YL Commun Biol. 2022 May 12;5(1):454. doi: 10.1038/s42003-022-03409-6. PMID:35551233[1] From MEDLINE®/PubMed®, a database of the U.S. National Library of Medicine. References
|
|