1a51: Difference between revisions
No edit summary |
No edit summary |
||
(12 intermediate revisions by the same user not shown) | |||
Line 1: | Line 1: | ||
== | ==LOOP D/LOOP E ARM OF E. COLI 5S RRNA, NMR, 9 STRUCTURES== | ||
<StructureSection load='1a51' size='340' side='right'caption='[[1a51]]' scene=''> | |||
== Structural highlights == | |||
<table><tr><td colspan='2'>[[1a51]] is a 1 chain structure with sequence from [https://en.wikipedia.org/wiki/Escherichia_coli Escherichia coli]. Full experimental information is available from [http://oca.weizmann.ac.il/oca-bin/ocashort?id=1A51 OCA]. For a <b>guided tour on the structure components</b> use [https://proteopedia.org/fgij/fg.htm?mol=1A51 FirstGlance]. <br> | |||
</td></tr><tr id='method'><td class="sblockLbl"><b>[[Empirical_models|Method:]]</b></td><td class="sblockDat" id="methodDat">Solution NMR</td></tr> | |||
<tr id='resources'><td class="sblockLbl"><b>Resources:</b></td><td class="sblockDat"><span class='plainlinks'>[https://proteopedia.org/fgij/fg.htm?mol=1a51 FirstGlance], [http://oca.weizmann.ac.il/oca-bin/ocaids?id=1a51 OCA], [https://pdbe.org/1a51 PDBe], [https://www.rcsb.org/pdb/explore.do?structureId=1a51 RCSB], [https://www.ebi.ac.uk/pdbsum/1a51 PDBsum], [https://prosat.h-its.org/prosat/prosatexe?pdbcode=1a51 ProSAT]</span></td></tr> | |||
</table> | |||
<div style="background-color:#fffaf0;"> | |||
== Publication Abstract from PubMed == | |||
BACKGROUND: 5S ribosomal RNA is the smallest rRNA. Its Watson-Crick helices were identified more than 20 years ago, but the conformations of its loops have long defied analysis. One of the three arms of 5S rRNA, residues 69-106 in Escherichia coli, contains a 14-residue internal loop called loop E. The sequence of loop E is conserved within kingdoms, and is terminated by a pyrimidine-rich loop called loop D. Loop E is the binding site for the ribosomal protein L25 in the E. coli ribosome. RESULTS: The solution structure of a 42-nucleotide derivative of E. coli 5S rRNA that includes loops D and E has been determined by nuclear magnetic resonance spectroscopy. Formally, loop E is not a loop at all; it is a double helical structure that contains seven, consecutive non-Watson-Crick base pairs. The major groove of the molecule is narrowed in loop E, and an unusual array of hydrogen-bond donors and acceptors appear in its minor groove. Loop D, which on paper looks like a three-pyrimidine terminal loop closed by a GC, is better thought of as a five-base loop because its closing GC is not a normal Watson-Crick pair. The two pyrimidines on the 5'-side of the loop are stacked on each other, and tilt into the minor groove of the adjacent helix. The third pyrimidine is fully exposed to solvent. CONCLUSIONS: This structure rationalizes all the biochemical and chemical protection data available for the loop E-loop D arm of intact 5S rRNA. While the molecule is double helical over its entire length, the geometry of its internal loop is highly irregular, and its irregularities may explain why the loop E-loop D arm of 5S rRNA interacts specifically with ribosomal protein L25 in E. coli. | BACKGROUND: 5S ribosomal RNA is the smallest rRNA. Its Watson-Crick helices were identified more than 20 years ago, but the conformations of its loops have long defied analysis. One of the three arms of 5S rRNA, residues 69-106 in Escherichia coli, contains a 14-residue internal loop called loop E. The sequence of loop E is conserved within kingdoms, and is terminated by a pyrimidine-rich loop called loop D. Loop E is the binding site for the ribosomal protein L25 in the E. coli ribosome. RESULTS: The solution structure of a 42-nucleotide derivative of E. coli 5S rRNA that includes loops D and E has been determined by nuclear magnetic resonance spectroscopy. Formally, loop E is not a loop at all; it is a double helical structure that contains seven, consecutive non-Watson-Crick base pairs. The major groove of the molecule is narrowed in loop E, and an unusual array of hydrogen-bond donors and acceptors appear in its minor groove. Loop D, which on paper looks like a three-pyrimidine terminal loop closed by a GC, is better thought of as a five-base loop because its closing GC is not a normal Watson-Crick pair. The two pyrimidines on the 5'-side of the loop are stacked on each other, and tilt into the minor groove of the adjacent helix. The third pyrimidine is fully exposed to solvent. CONCLUSIONS: This structure rationalizes all the biochemical and chemical protection data available for the loop E-loop D arm of intact 5S rRNA. While the molecule is double helical over its entire length, the geometry of its internal loop is highly irregular, and its irregularities may explain why the loop E-loop D arm of 5S rRNA interacts specifically with ribosomal protein L25 in E. coli. | ||
The loop E-loop D region of Escherichia coli 5S rRNA: the solution structure reveals an unusual loop that may be important for binding ribosomal proteins.,Dallas A, Moore PB Structure. 1997 Dec 15;5(12):1639-53. PMID:9438864<ref>PMID:9438864</ref> | |||
From MEDLINE®/PubMed®, a database of the U.S. National Library of Medicine.<br> | |||
</div> | |||
<div class="pdbe-citations 1a51" style="background-color:#fffaf0;"></div> | |||
== References == | |||
<references/> | |||
__TOC__ | |||
</StructureSection> | |||
[[Category: Escherichia coli]] | [[Category: Escherichia coli]] | ||
[[Category: | [[Category: Large Structures]] | ||
[[Category: Dallas | [[Category: Dallas A]] | ||
[[Category: Moore | [[Category: Moore PB]] | ||
Latest revision as of 14:32, 22 November 2023
LOOP D/LOOP E ARM OF E. COLI 5S RRNA, NMR, 9 STRUCTURESLOOP D/LOOP E ARM OF E. COLI 5S RRNA, NMR, 9 STRUCTURES
Structural highlights
Publication Abstract from PubMedBACKGROUND: 5S ribosomal RNA is the smallest rRNA. Its Watson-Crick helices were identified more than 20 years ago, but the conformations of its loops have long defied analysis. One of the three arms of 5S rRNA, residues 69-106 in Escherichia coli, contains a 14-residue internal loop called loop E. The sequence of loop E is conserved within kingdoms, and is terminated by a pyrimidine-rich loop called loop D. Loop E is the binding site for the ribosomal protein L25 in the E. coli ribosome. RESULTS: The solution structure of a 42-nucleotide derivative of E. coli 5S rRNA that includes loops D and E has been determined by nuclear magnetic resonance spectroscopy. Formally, loop E is not a loop at all; it is a double helical structure that contains seven, consecutive non-Watson-Crick base pairs. The major groove of the molecule is narrowed in loop E, and an unusual array of hydrogen-bond donors and acceptors appear in its minor groove. Loop D, which on paper looks like a three-pyrimidine terminal loop closed by a GC, is better thought of as a five-base loop because its closing GC is not a normal Watson-Crick pair. The two pyrimidines on the 5'-side of the loop are stacked on each other, and tilt into the minor groove of the adjacent helix. The third pyrimidine is fully exposed to solvent. CONCLUSIONS: This structure rationalizes all the biochemical and chemical protection data available for the loop E-loop D arm of intact 5S rRNA. While the molecule is double helical over its entire length, the geometry of its internal loop is highly irregular, and its irregularities may explain why the loop E-loop D arm of 5S rRNA interacts specifically with ribosomal protein L25 in E. coli. The loop E-loop D region of Escherichia coli 5S rRNA: the solution structure reveals an unusual loop that may be important for binding ribosomal proteins.,Dallas A, Moore PB Structure. 1997 Dec 15;5(12):1639-53. PMID:9438864[1] From MEDLINE®/PubMed®, a database of the U.S. National Library of Medicine. References |
|