1w3o: Difference between revisions
No edit summary |
No edit summary |
||
(15 intermediate revisions by the same user not shown) | |||
Line 1: | Line 1: | ||
== | ==Crystal structure of NimA from D. radiodurans== | ||
5-Nitroimidazole-based antibiotics are compounds extensively used for | <StructureSection load='1w3o' size='340' side='right'caption='[[1w3o]], [[Resolution|resolution]] 1.60Å' scene=''> | ||
== Structural highlights == | |||
<table><tr><td colspan='2'>[[1w3o]] is a 1 chain structure with sequence from [https://en.wikipedia.org/wiki/Deinococcus_radiodurans Deinococcus radiodurans]. Full crystallographic information is available from [http://oca.weizmann.ac.il/oca-bin/ocashort?id=1W3O OCA]. For a <b>guided tour on the structure components</b> use [https://proteopedia.org/fgij/fg.htm?mol=1W3O FirstGlance]. <br> | |||
</td></tr><tr id='method'><td class="sblockLbl"><b>[[Empirical_models|Method:]]</b></td><td class="sblockDat" id="methodDat">X-ray diffraction, [[Resolution|Resolution]] 1.6Å</td></tr> | |||
<tr id='ligand'><td class="sblockLbl"><b>[[Ligand|Ligands:]]</b></td><td class="sblockDat" id="ligandDat"><scene name='pdbligand=ACT:ACETATE+ION'>ACT</scene>, <scene name='pdbligand=PYR:PYRUVIC+ACID'>PYR</scene></td></tr> | |||
<tr id='resources'><td class="sblockLbl"><b>Resources:</b></td><td class="sblockDat"><span class='plainlinks'>[https://proteopedia.org/fgij/fg.htm?mol=1w3o FirstGlance], [http://oca.weizmann.ac.il/oca-bin/ocaids?id=1w3o OCA], [https://pdbe.org/1w3o PDBe], [https://www.rcsb.org/pdb/explore.do?structureId=1w3o RCSB], [https://www.ebi.ac.uk/pdbsum/1w3o PDBsum], [https://prosat.h-its.org/prosat/prosatexe?pdbcode=1w3o ProSAT]</span></td></tr> | |||
</table> | |||
== Function == | |||
[https://www.uniprot.org/uniprot/Q9RW27_DEIRA Q9RW27_DEIRA] | |||
== Evolutionary Conservation == | |||
[[Image:Consurf_key_small.gif|200px|right]] | |||
Check<jmol> | |||
<jmolCheckbox> | |||
<scriptWhenChecked>; select protein; define ~consurf_to_do selected; consurf_initial_scene = true; script "/wiki/ConSurf/w3/1w3o_consurf.spt"</scriptWhenChecked> | |||
<scriptWhenUnchecked>script /wiki/extensions/Proteopedia/spt/initialview01.spt</scriptWhenUnchecked> | |||
<text>to colour the structure by Evolutionary Conservation</text> | |||
</jmolCheckbox> | |||
</jmol>, as determined by [http://consurfdb.tau.ac.il/ ConSurfDB]. You may read the [[Conservation%2C_Evolutionary|explanation]] of the method and the full data available from [http://bental.tau.ac.il/new_ConSurfDB/main_output.php?pdb_ID=1w3o ConSurf]. | |||
<div style="clear:both"></div> | |||
<div style="background-color:#fffaf0;"> | |||
== Publication Abstract from PubMed == | |||
5-Nitroimidazole-based antibiotics are compounds extensively used for treating infections in humans and animals caused by several important pathogens. They are administered as prodrugs, and their activation depends upon an anaerobic 1-electron reduction of the nitro group by a reduction pathway in the cells. Bacterial resistance toward these drugs is thought to be caused by decreased drug uptake and/or an altered reduction efficiency. One class of resistant strains, identified in Bacteroides, has been shown to carry Nim genes (NimA, -B, -C, -D, and -E), which encode for reductases that convert the nitro group on the antibiotic into a non-bactericidal amine. In this paper, we have described the crystal structure of NimA from Deinococcus radiodurans (drNimA) at 1.6 A resolution. We have shown that drNimA is a homodimer in which each monomer adopts a beta-barrel fold. We have identified the catalytically important His-71 along with the cofactor pyruvate and antibiotic binding sites, all of which are found at the monomer-monomer interface. We have reported three additional crystal structures of drNimA, one in which the antibiotic metronidazole is bound to the protein, one with pyruvate covalently bound to His-71, and one with lactate covalently bound to His-71. Based on these structures, a reaction mechanism has been proposed in which the 2-electron reduction of the antibiotic prevents accumulation of the toxic nitro radical. This mechanism suggests that Nim proteins form a new class of reductases, conferring resistance against 5-nitroimidazole-based antibiotics. | |||
Structural basis of 5-nitroimidazole antibiotic resistance: the crystal structure of NimA from Deinococcus radiodurans.,Leiros HK, Kozielski-Stuhrmann S, Kapp U, Terradot L, Leonard GA, McSweeney SM J Biol Chem. 2004 Dec 31;279(53):55840-9. Epub 2004 Oct 18. PMID:15492014<ref>PMID:15492014</ref> | |||
From MEDLINE®/PubMed®, a database of the U.S. National Library of Medicine.<br> | |||
</div> | |||
<div class="pdbe-citations 1w3o" style="background-color:#fffaf0;"></div> | |||
== References == | |||
<references/> | |||
__TOC__ | |||
</StructureSection> | |||
[[Category: Deinococcus radiodurans]] | [[Category: Deinococcus radiodurans]] | ||
[[Category: | [[Category: Large Structures]] | ||
[[Category: Kapp | [[Category: Kapp U]] | ||
[[Category: Kozielski-Stuhrmann | [[Category: Kozielski-Stuhrmann S]] | ||
[[Category: Leiros | [[Category: Leiros H-KS]] | ||
[[Category: Leonard | [[Category: Leonard GA]] | ||
[[Category: | [[Category: McSweeney SM]] | ||
[[Category: Terradot | [[Category: Terradot L]] | ||
Latest revision as of 11:08, 15 November 2023
Crystal structure of NimA from D. radioduransCrystal structure of NimA from D. radiodurans
Structural highlights
FunctionEvolutionary Conservation![]() Check, as determined by ConSurfDB. You may read the explanation of the method and the full data available from ConSurf. Publication Abstract from PubMed5-Nitroimidazole-based antibiotics are compounds extensively used for treating infections in humans and animals caused by several important pathogens. They are administered as prodrugs, and their activation depends upon an anaerobic 1-electron reduction of the nitro group by a reduction pathway in the cells. Bacterial resistance toward these drugs is thought to be caused by decreased drug uptake and/or an altered reduction efficiency. One class of resistant strains, identified in Bacteroides, has been shown to carry Nim genes (NimA, -B, -C, -D, and -E), which encode for reductases that convert the nitro group on the antibiotic into a non-bactericidal amine. In this paper, we have described the crystal structure of NimA from Deinococcus radiodurans (drNimA) at 1.6 A resolution. We have shown that drNimA is a homodimer in which each monomer adopts a beta-barrel fold. We have identified the catalytically important His-71 along with the cofactor pyruvate and antibiotic binding sites, all of which are found at the monomer-monomer interface. We have reported three additional crystal structures of drNimA, one in which the antibiotic metronidazole is bound to the protein, one with pyruvate covalently bound to His-71, and one with lactate covalently bound to His-71. Based on these structures, a reaction mechanism has been proposed in which the 2-electron reduction of the antibiotic prevents accumulation of the toxic nitro radical. This mechanism suggests that Nim proteins form a new class of reductases, conferring resistance against 5-nitroimidazole-based antibiotics. Structural basis of 5-nitroimidazole antibiotic resistance: the crystal structure of NimA from Deinococcus radiodurans.,Leiros HK, Kozielski-Stuhrmann S, Kapp U, Terradot L, Leonard GA, McSweeney SM J Biol Chem. 2004 Dec 31;279(53):55840-9. Epub 2004 Oct 18. PMID:15492014[1] From MEDLINE®/PubMed®, a database of the U.S. National Library of Medicine. References
|
|