1rci: Difference between revisions

From Proteopedia
Jump to navigation Jump to search
No edit summary
No edit summary
 
(3 intermediate revisions by the same user not shown)
Line 1: Line 1:
==BULLFROG RED CELL L FERRITIN TARTRATE/MG/PH 5.5==
==BULLFROG RED CELL L FERRITIN TARTRATE/MG/PH 5.5==
<StructureSection load='1rci' size='340' side='right' caption='[[1rci]], [[Resolution|resolution]] 2.00&Aring;' scene=''>
<StructureSection load='1rci' size='340' side='right'caption='[[1rci]], [[Resolution|resolution]] 2.00&Aring;' scene=''>
== Structural highlights ==
== Structural highlights ==
<table><tr><td colspan='2'>[[1rci]] is a 1 chain structure with sequence from [http://en.wikipedia.org/wiki/American_bullfrog American bullfrog]. Full crystallographic information is available from [http://oca.weizmann.ac.il/oca-bin/ocashort?id=1RCI OCA]. For a <b>guided tour on the structure components</b> use [http://oca.weizmann.ac.il/oca-docs/fgij/fg.htm?mol=1RCI FirstGlance]. <br>
<table><tr><td colspan='2'>[[1rci]] is a 1 chain structure with sequence from [https://en.wikipedia.org/wiki/Lithobates_catesbeianus Lithobates catesbeianus]. Full crystallographic information is available from [http://oca.weizmann.ac.il/oca-bin/ocashort?id=1RCI OCA]. For a <b>guided tour on the structure components</b> use [https://proteopedia.org/fgij/fg.htm?mol=1RCI FirstGlance]. <br>
</td></tr><tr id='ligand'><td class="sblockLbl"><b>[[Ligand|Ligands:]]</b></td><td class="sblockDat"><scene name='pdbligand=BET:TRIMETHYL+GLYCINE'>BET</scene></td></tr>
</td></tr><tr id='method'><td class="sblockLbl"><b>[[Empirical_models|Method:]]</b></td><td class="sblockDat" id="methodDat">X-ray diffraction, [[Resolution|Resolution]] 2&#8491;</td></tr>
<tr id='gene'><td class="sblockLbl"><b>[[Gene|Gene:]]</b></td><td class="sblockDat">CDNA ([http://www.ncbi.nlm.nih.gov/Taxonomy/Browser/wwwtax.cgi?mode=Info&srchmode=5&id=8400 American bullfrog])</td></tr>
<tr id='ligand'><td class="sblockLbl"><b>[[Ligand|Ligands:]]</b></td><td class="sblockDat" id="ligandDat"><scene name='pdbligand=BET:TRIMETHYL+GLYCINE'>BET</scene></td></tr>
<tr id='resources'><td class="sblockLbl"><b>Resources:</b></td><td class="sblockDat"><span class='plainlinks'>[http://oca.weizmann.ac.il/oca-docs/fgij/fg.htm?mol=1rci FirstGlance], [http://oca.weizmann.ac.il/oca-bin/ocaids?id=1rci OCA], [http://pdbe.org/1rci PDBe], [http://www.rcsb.org/pdb/explore.do?structureId=1rci RCSB], [http://www.ebi.ac.uk/pdbsum/1rci PDBsum]</span></td></tr>
<tr id='resources'><td class="sblockLbl"><b>Resources:</b></td><td class="sblockDat"><span class='plainlinks'>[https://proteopedia.org/fgij/fg.htm?mol=1rci FirstGlance], [http://oca.weizmann.ac.il/oca-bin/ocaids?id=1rci OCA], [https://pdbe.org/1rci PDBe], [https://www.rcsb.org/pdb/explore.do?structureId=1rci RCSB], [https://www.ebi.ac.uk/pdbsum/1rci PDBsum], [https://prosat.h-its.org/prosat/prosatexe?pdbcode=1rci ProSAT]</span></td></tr>
</table>
</table>
== Function ==
== Function ==
[[http://www.uniprot.org/uniprot/FRI3_LITCT FRI3_LITCT]] Stores iron in a soluble, non-toxic, readily available form. Important for iron homeostasis. Iron is taken up in the ferrous form and deposited as ferric hydroxides after oxidation.<ref>PMID:7760335</ref>
[https://www.uniprot.org/uniprot/FRI3_LITCT FRI3_LITCT] Stores iron in a soluble, non-toxic, readily available form. Important for iron homeostasis. Iron is taken up in the ferrous form and deposited as ferric hydroxides after oxidation.<ref>PMID:7760335</ref>  
== Evolutionary Conservation ==
== Evolutionary Conservation ==
[[Image:Consurf_key_small.gif|200px|right]]
[[Image:Consurf_key_small.gif|200px|right]]
Check<jmol>
Check<jmol>
   <jmolCheckbox>
   <jmolCheckbox>
     <scriptWhenChecked>select protein; define ~consurf_to_do selected; consurf_initial_scene = true; script "/wiki/ConSurf/rc/1rci_consurf.spt"</scriptWhenChecked>
     <scriptWhenChecked>; select protein; define ~consurf_to_do selected; consurf_initial_scene = true; script "/wiki/ConSurf/rc/1rci_consurf.spt"</scriptWhenChecked>
     <scriptWhenUnchecked>script /wiki/extensions/Proteopedia/spt/initialview01.spt</scriptWhenUnchecked>
     <scriptWhenUnchecked>script /wiki/extensions/Proteopedia/spt/initialview01.spt</scriptWhenUnchecked>
     <text>to colour the structure by Evolutionary Conservation</text>
     <text>to colour the structure by Evolutionary Conservation</text>
Line 30: Line 31:


==See Also==
==See Also==
*[[Ferritin|Ferritin]]
*[[Ferritin 3D structures|Ferritin 3D structures]]
*[[Ribonuclease|Ribonuclease]]
*[[Ribonuclease 3D structures|Ribonuclease 3D structures]]
*[[Temp|Temp]]
== References ==
== References ==
<references/>
<references/>
__TOC__
__TOC__
</StructureSection>
</StructureSection>
[[Category: American bullfrog]]
[[Category: Large Structures]]
[[Category: Allewell, N M]]
[[Category: Lithobates catesbeianus]]
[[Category: Theil, E C]]
[[Category: Allewell NM]]
[[Category: Trikha, J]]
[[Category: Theil EC]]
[[Category: Iron storage]]
[[Category: Trikha J]]

Latest revision as of 11:03, 15 November 2023

BULLFROG RED CELL L FERRITIN TARTRATE/MG/PH 5.5BULLFROG RED CELL L FERRITIN TARTRATE/MG/PH 5.5

Structural highlights

1rci is a 1 chain structure with sequence from Lithobates catesbeianus. Full crystallographic information is available from OCA. For a guided tour on the structure components use FirstGlance.
Method:X-ray diffraction, Resolution 2Å
Ligands:
Resources:FirstGlance, OCA, PDBe, RCSB, PDBsum, ProSAT

Function

FRI3_LITCT Stores iron in a soluble, non-toxic, readily available form. Important for iron homeostasis. Iron is taken up in the ferrous form and deposited as ferric hydroxides after oxidation.[1]

Evolutionary Conservation

Check, as determined by ConSurfDB. You may read the explanation of the method and the full data available from ConSurf.

Publication Abstract from PubMed

Ferritin is a highly conserved multisubunit protein in animals, plants and microbes which assembles with cubic symmetry and transports hydrated iron ions and protons to and from a mineralized core in the protein interior. We report here the high resolution structures of recombinant amphibian red-cell L ferritin and two mutants solved under two sets of conditions. In one mutant, Glu56, 57, 58 and 60 were replaced with Ala, producing a lag phase in the kinetics of iron uptake. In the second mutant, His25 was replaced with Tyr with, at most, subtle effects on function. A molecule of betaine, used in the purification, is bound in all structures at the 2-fold axis near the recently identified heme binding site of bacterioferritin and horse spleen L ferritin. Comparisons of the five amphibian structures identify two regions of the molecule in which conformational flexibility may be related to function. The positions and interactions of a set of 10 to 18 side-chains, most of which are on the inner surface of the protein, are sensitive both to solution conditions and to the Glu-->Ala mutation. A subset of these side-chains and a chain of ordered solvent molecules extends from the vicinity of Glu56 to 58 and Glu60 to the 3-fold channel in the wild type protein and may be involved in the transport of either iron or protons. The "spine of hydration" is disrupted in the Glu-->Ala mutant. In contrast, H25Y mutation shifts the positions of backbone atoms between the site of the mutation and the 4-fold axis and side-chain positions throughout the structure; the largest changes in the position of backbone atoms are in the DE loop and E helix, approximately 10 A from the mutation site. In combination, these results indicate that solvation, structural plasticity and cooperative structural changes may play a role in ferritin function. Analogies with the structure and function of ion channel proteins such as annexins are noted.

High resolution crystal structures of amphibian red-cell L ferritin: potential roles for structural plasticity and solvation in function.,Trikha J, Theil EC, Allewell NM J Mol Biol. 1995 May 19;248(5):949-67. PMID:7760335[2]

From MEDLINE®/PubMed®, a database of the U.S. National Library of Medicine.

See Also

References

  1. Trikha J, Theil EC, Allewell NM. High resolution crystal structures of amphibian red-cell L ferritin: potential roles for structural plasticity and solvation in function. J Mol Biol. 1995 May 19;248(5):949-67. PMID:7760335 doi:http://dx.doi.org/10.1006/jmbi.1995.0274
  2. Trikha J, Theil EC, Allewell NM. High resolution crystal structures of amphibian red-cell L ferritin: potential roles for structural plasticity and solvation in function. J Mol Biol. 1995 May 19;248(5):949-67. PMID:7760335 doi:http://dx.doi.org/10.1006/jmbi.1995.0274

1rci, resolution 2.00Å

Drag the structure with the mouse to rotate

Proteopedia Page Contributors and Editors (what is this?)Proteopedia Page Contributors and Editors (what is this?)

OCA