1rcd: Difference between revisions

From Proteopedia
Jump to navigation Jump to search
No edit summary
No edit summary
 
(11 intermediate revisions by the same user not shown)
Line 1: Line 1:
[[Image:1rcd.gif|left|200px]]
<!--
The line below this paragraph, containing "STRUCTURE_1rcd", creates the "Structure Box" on the page.
You may change the PDB parameter (which sets the PDB file loaded into the applet)
or the SCENE parameter (which sets the initial scene displayed when the page is loaded),
or leave the SCENE parameter empty for the default display.
-->
{{STRUCTURE_1rcd|  PDB=1rcd  |  SCENE=  }}
'''BULLFROG RED CELL L FERRITIN TARTRATE/MG/PH 5.5'''


==BULLFROG RED CELL L FERRITIN TARTRATE/MG/PH 5.5==
<StructureSection load='1rcd' size='340' side='right'caption='[[1rcd]], [[Resolution|resolution]] 2.00&Aring;' scene=''>
== Structural highlights ==
<table><tr><td colspan='2'>[[1rcd]] is a 1 chain structure with sequence from [https://en.wikipedia.org/wiki/Lithobates_catesbeianus Lithobates catesbeianus]. Full crystallographic information is available from [http://oca.weizmann.ac.il/oca-bin/ocashort?id=1RCD OCA]. For a <b>guided tour on the structure components</b> use [https://proteopedia.org/fgij/fg.htm?mol=1RCD FirstGlance]. <br>
</td></tr><tr id='method'><td class="sblockLbl"><b>[[Empirical_models|Method:]]</b></td><td class="sblockDat" id="methodDat">X-ray diffraction, [[Resolution|Resolution]] 2&#8491;</td></tr>
<tr id='ligand'><td class="sblockLbl"><b>[[Ligand|Ligands:]]</b></td><td class="sblockDat" id="ligandDat"><scene name='pdbligand=BET:TRIMETHYL+GLYCINE'>BET</scene></td></tr>
<tr id='resources'><td class="sblockLbl"><b>Resources:</b></td><td class="sblockDat"><span class='plainlinks'>[https://proteopedia.org/fgij/fg.htm?mol=1rcd FirstGlance], [http://oca.weizmann.ac.il/oca-bin/ocaids?id=1rcd OCA], [https://pdbe.org/1rcd PDBe], [https://www.rcsb.org/pdb/explore.do?structureId=1rcd RCSB], [https://www.ebi.ac.uk/pdbsum/1rcd PDBsum], [https://prosat.h-its.org/prosat/prosatexe?pdbcode=1rcd ProSAT]</span></td></tr>
</table>
== Function ==
[https://www.uniprot.org/uniprot/FRI3_LITCT FRI3_LITCT] Stores iron in a soluble, non-toxic, readily available form. Important for iron homeostasis. Iron is taken up in the ferrous form and deposited as ferric hydroxides after oxidation.<ref>PMID:7760335</ref>
== Evolutionary Conservation ==
[[Image:Consurf_key_small.gif|200px|right]]
Check<jmol>
  <jmolCheckbox>
    <scriptWhenChecked>; select protein; define ~consurf_to_do selected; consurf_initial_scene = true; script "/wiki/ConSurf/rc/1rcd_consurf.spt"</scriptWhenChecked>
    <scriptWhenUnchecked>script /wiki/extensions/Proteopedia/spt/initialview01.spt</scriptWhenUnchecked>
    <text>to colour the structure by Evolutionary Conservation</text>
  </jmolCheckbox>
</jmol>, as determined by [http://consurfdb.tau.ac.il/ ConSurfDB]. You may read the [[Conservation%2C_Evolutionary|explanation]] of the method and the full data available from [http://bental.tau.ac.il/new_ConSurfDB/main_output.php?pdb_ID=1rcd ConSurf].
<div style="clear:both"></div>
<div style="background-color:#fffaf0;">
== Publication Abstract from PubMed ==
Ferritin is a highly conserved multisubunit protein in animals, plants and microbes which assembles with cubic symmetry and transports hydrated iron ions and protons to and from a mineralized core in the protein interior. We report here the high resolution structures of recombinant amphibian red-cell L ferritin and two mutants solved under two sets of conditions. In one mutant, Glu56, 57, 58 and 60 were replaced with Ala, producing a lag phase in the kinetics of iron uptake. In the second mutant, His25 was replaced with Tyr with, at most, subtle effects on function. A molecule of betaine, used in the purification, is bound in all structures at the 2-fold axis near the recently identified heme binding site of bacterioferritin and horse spleen L ferritin. Comparisons of the five amphibian structures identify two regions of the molecule in which conformational flexibility may be related to function. The positions and interactions of a set of 10 to 18 side-chains, most of which are on the inner surface of the protein, are sensitive both to solution conditions and to the Glu--&gt;Ala mutation. A subset of these side-chains and a chain of ordered solvent molecules extends from the vicinity of Glu56 to 58 and Glu60 to the 3-fold channel in the wild type protein and may be involved in the transport of either iron or protons. The "spine of hydration" is disrupted in the Glu--&gt;Ala mutant. In contrast, H25Y mutation shifts the positions of backbone atoms between the site of the mutation and the 4-fold axis and side-chain positions throughout the structure; the largest changes in the position of backbone atoms are in the DE loop and E helix, approximately 10 A from the mutation site. In combination, these results indicate that solvation, structural plasticity and cooperative structural changes may play a role in ferritin function. Analogies with the structure and function of ion channel proteins such as annexins are noted.


==Overview==
High resolution crystal structures of amphibian red-cell L ferritin: potential roles for structural plasticity and solvation in function.,Trikha J, Theil EC, Allewell NM J Mol Biol. 1995 May 19;248(5):949-67. PMID:7760335<ref>PMID:7760335</ref>
Ferritin is a highly conserved multisubunit protein in animals, plants and microbes which assembles with cubic symmetry and transports hydrated iron ions and protons to and from a mineralized core in the protein interior. We report here the high resolution structures of recombinant amphibian red-cell L ferritin and two mutants solved under two sets of conditions. In one mutant, Glu56, 57, 58 and 60 were replaced with Ala, producing a lag phase in the kinetics of iron uptake. In the second mutant, His25 was replaced with Tyr with, at most, subtle effects on function. A molecule of betaine, used in the purification, is bound in all structures at the 2-fold axis near the recently identified heme binding site of bacterioferritin and horse spleen L ferritin. Comparisons of the five amphibian structures identify two regions of the molecule in which conformational flexibility may be related to function. The positions and interactions of a set of 10 to 18 side-chains, most of which are on the inner surface of the protein, are sensitive both to solution conditions and to the Glu--&gt;Ala mutation. A subset of these side-chains and a chain of ordered solvent molecules extends from the vicinity of Glu56 to 58 and Glu60 to the 3-fold channel in the wild type protein and may be involved in the transport of either iron or protons. The "spine of hydration" is disrupted in the Glu--&gt;Ala mutant. In contrast, H25Y mutation shifts the positions of backbone atoms between the site of the mutation and the 4-fold axis and side-chain positions throughout the structure; the largest changes in the position of backbone atoms are in the DE loop and E helix, approximately 10 A from the mutation site. In combination, these results indicate that solvation, structural plasticity and cooperative structural changes may play a role in ferritin function. Analogies with the structure and function of ion channel proteins such as annexins are noted.


==About this Structure==
From MEDLINE&reg;/PubMed&reg;, a database of the U.S. National Library of Medicine.<br>
1RCD is a [[Single protein]] structure of sequence from [http://en.wikipedia.org/wiki/Rana_catesbeiana Rana catesbeiana]. Full crystallographic information is available from [http://oca.weizmann.ac.il/oca-bin/ocashort?id=1RCD OCA].
</div>
<div class="pdbe-citations 1rcd" style="background-color:#fffaf0;"></div>


==Reference==
==See Also==
High resolution crystal structures of amphibian red-cell L ferritin: potential roles for structural plasticity and solvation in function., Trikha J, Theil EC, Allewell NM, J Mol Biol. 1995 May 19;248(5):949-67. PMID:[http://www.ncbi.nlm.nih.gov/pubmed/7760335 7760335]
*[[Ferritin 3D structures|Ferritin 3D structures]]
[[Category: Rana catesbeiana]]
== References ==
[[Category: Single protein]]
<references/>
[[Category: Allewell, N M.]]
__TOC__
[[Category: Theil, E C.]]
</StructureSection>
[[Category: Trikha, J.]]
[[Category: Large Structures]]
[[Category: Iron storage]]
[[Category: Lithobates catesbeianus]]
''Page seeded by [http://oca.weizmann.ac.il/oca OCA ] on Sat May  3 07:19:49 2008''
[[Category: Allewell NM]]
[[Category: Theil EC]]
[[Category: Trikha J]]

Latest revision as of 11:03, 15 November 2023

BULLFROG RED CELL L FERRITIN TARTRATE/MG/PH 5.5BULLFROG RED CELL L FERRITIN TARTRATE/MG/PH 5.5

Structural highlights

1rcd is a 1 chain structure with sequence from Lithobates catesbeianus. Full crystallographic information is available from OCA. For a guided tour on the structure components use FirstGlance.
Method:X-ray diffraction, Resolution 2Å
Ligands:
Resources:FirstGlance, OCA, PDBe, RCSB, PDBsum, ProSAT

Function

FRI3_LITCT Stores iron in a soluble, non-toxic, readily available form. Important for iron homeostasis. Iron is taken up in the ferrous form and deposited as ferric hydroxides after oxidation.[1]

Evolutionary Conservation

Check, as determined by ConSurfDB. You may read the explanation of the method and the full data available from ConSurf.

Publication Abstract from PubMed

Ferritin is a highly conserved multisubunit protein in animals, plants and microbes which assembles with cubic symmetry and transports hydrated iron ions and protons to and from a mineralized core in the protein interior. We report here the high resolution structures of recombinant amphibian red-cell L ferritin and two mutants solved under two sets of conditions. In one mutant, Glu56, 57, 58 and 60 were replaced with Ala, producing a lag phase in the kinetics of iron uptake. In the second mutant, His25 was replaced with Tyr with, at most, subtle effects on function. A molecule of betaine, used in the purification, is bound in all structures at the 2-fold axis near the recently identified heme binding site of bacterioferritin and horse spleen L ferritin. Comparisons of the five amphibian structures identify two regions of the molecule in which conformational flexibility may be related to function. The positions and interactions of a set of 10 to 18 side-chains, most of which are on the inner surface of the protein, are sensitive both to solution conditions and to the Glu-->Ala mutation. A subset of these side-chains and a chain of ordered solvent molecules extends from the vicinity of Glu56 to 58 and Glu60 to the 3-fold channel in the wild type protein and may be involved in the transport of either iron or protons. The "spine of hydration" is disrupted in the Glu-->Ala mutant. In contrast, H25Y mutation shifts the positions of backbone atoms between the site of the mutation and the 4-fold axis and side-chain positions throughout the structure; the largest changes in the position of backbone atoms are in the DE loop and E helix, approximately 10 A from the mutation site. In combination, these results indicate that solvation, structural plasticity and cooperative structural changes may play a role in ferritin function. Analogies with the structure and function of ion channel proteins such as annexins are noted.

High resolution crystal structures of amphibian red-cell L ferritin: potential roles for structural plasticity and solvation in function.,Trikha J, Theil EC, Allewell NM J Mol Biol. 1995 May 19;248(5):949-67. PMID:7760335[2]

From MEDLINE®/PubMed®, a database of the U.S. National Library of Medicine.

See Also

References

  1. Trikha J, Theil EC, Allewell NM. High resolution crystal structures of amphibian red-cell L ferritin: potential roles for structural plasticity and solvation in function. J Mol Biol. 1995 May 19;248(5):949-67. PMID:7760335 doi:http://dx.doi.org/10.1006/jmbi.1995.0274
  2. Trikha J, Theil EC, Allewell NM. High resolution crystal structures of amphibian red-cell L ferritin: potential roles for structural plasticity and solvation in function. J Mol Biol. 1995 May 19;248(5):949-67. PMID:7760335 doi:http://dx.doi.org/10.1006/jmbi.1995.0274

1rcd, resolution 2.00Å

Drag the structure with the mouse to rotate

Proteopedia Page Contributors and Editors (what is this?)Proteopedia Page Contributors and Editors (what is this?)

OCA