4h3p: Difference between revisions
No edit summary |
No edit summary |
||
(4 intermediate revisions by the same user not shown) | |||
Line 1: | Line 1: | ||
==Crystal structure of human ERK2 complexed with a MAPK docking peptide== | |||
<StructureSection load='4h3p' size='340' side='right'caption='[[4h3p]], [[Resolution|resolution]] 2.30Å' scene=''> | |||
== Structural highlights == | |||
<table><tr><td colspan='2'>[[4h3p]] is a 4 chain structure with sequence from [https://en.wikipedia.org/wiki/Homo_sapiens Homo sapiens]. Full crystallographic information is available from [http://oca.weizmann.ac.il/oca-bin/ocashort?id=4H3P OCA]. For a <b>guided tour on the structure components</b> use [https://proteopedia.org/fgij/fg.htm?mol=4H3P FirstGlance]. <br> | |||
</td></tr><tr id='method'><td class="sblockLbl"><b>[[Empirical_models|Method:]]</b></td><td class="sblockDat" id="methodDat">X-ray diffraction, [[Resolution|Resolution]] 2.3Å</td></tr> | |||
<tr id='ligand'><td class="sblockLbl"><b>[[Ligand|Ligands:]]</b></td><td class="sblockDat" id="ligandDat"><scene name='pdbligand=ANP:PHOSPHOAMINOPHOSPHONIC+ACID-ADENYLATE+ESTER'>ANP</scene></td></tr> | |||
<tr id='resources'><td class="sblockLbl"><b>Resources:</b></td><td class="sblockDat"><span class='plainlinks'>[https://proteopedia.org/fgij/fg.htm?mol=4h3p FirstGlance], [http://oca.weizmann.ac.il/oca-bin/ocaids?id=4h3p OCA], [https://pdbe.org/4h3p PDBe], [https://www.rcsb.org/pdb/explore.do?structureId=4h3p RCSB], [https://www.ebi.ac.uk/pdbsum/4h3p PDBsum], [https://prosat.h-its.org/prosat/prosatexe?pdbcode=4h3p ProSAT]</span></td></tr> | |||
</table> | |||
== Function == | |||
[https://www.uniprot.org/uniprot/MK01_HUMAN MK01_HUMAN] Serine/threonine kinase which acts as an essential component of the MAP kinase signal transduction pathway. MAPK1/ERK2 and MAPK3/ERK1 are the 2 MAPKs which play an important role in the MAPK/ERK cascade. They participate also in a signaling cascade initiated by activated KIT and KITLG/SCF. Depending on the cellular context, the MAPK/ERK cascade mediates diverse biological functions such as cell growth, adhesion, survival and differentiation through the regulation of transcription, translation, cytoskeletal rearrangements. The MAPK/ERK cascade plays also a role in initiation and regulation of meiosis, mitosis, and postmitotic functions in differentiated cells by phosphorylating a number of transcription factors. About 160 substrates have already been discovered for ERKs. Many of these substrates are localized in the nucleus, and seem to participate in the regulation of transcription upon stimulation. However, other substrates are found in the cytosol as well as in other cellular organelles, and those are responsible for processes such as translation, mitosis and apoptosis. Moreover, the MAPK/ERK cascade is also involved in the regulation of the endosomal dynamics, including lysosome processing and endosome cycling through the perinuclear recycling compartment (PNRC); as well as in the fragmentation of the Golgi apparatus during mitosis. The substrates include transcription factors (such as ATF2, BCL6, ELK1, ERF, FOS, HSF4 or SPZ1), cytoskeletal elements (such as CANX, CTTN, GJA1, MAP2, MAPT, PXN, SORBS3 or STMN1), regulators of apoptosis (such as BAD, BTG2, CASP9, DAPK1, IER3, MCL1 or PPARG), regulators of translation (such as EIF4EBP1) and a variety of other signaling-related molecules (like ARHGEF2, DCC, FRS2 or GRB10). Protein kinases (such as RAF1, RPS6KA1/RSK1, RPS6KA3/RSK2, RPS6KA2/RSK3, RPS6KA6/RSK4, SYK, MKNK1/MNK1, MKNK2/MNK2, RPS6KA5/MSK1, RPS6KA4/MSK2, MAPKAPK3 or MAPKAPK5) and phosphatases (such as DUSP1, DUSP4, DUSP6 or DUSP16) are other substrates which enable the propagation the MAPK/ERK signal to additional cytosolic and nuclear targets, thereby extending the specificity of the cascade. May play a role in the spindle assembly checkpoint.<ref>PMID:7588608</ref> <ref>PMID:8622688</ref> <ref>PMID:9480836</ref> <ref>PMID:9687510</ref> <ref>PMID:9649500</ref> <ref>PMID:9596579</ref> <ref>PMID:10637505</ref> <ref>PMID:10617468</ref> <ref>PMID:11154262</ref> <ref>PMID:12110590</ref> <ref>PMID:12356731</ref> <ref>PMID:12974390</ref> <ref>PMID:12794087</ref> <ref>PMID:12792650</ref> <ref>PMID:15184391</ref> <ref>PMID:15241487</ref> <ref>PMID:15952796</ref> <ref>PMID:15616583</ref> <ref>PMID:15788397</ref> <ref>PMID:15664191</ref> <ref>PMID:16581800</ref> <ref>PMID:19879846</ref> <ref>PMID:19265199</ref> Acts as a transcriptional repressor. Binds to a [GC]AAA[GC] consensus sequence. Repress the expression of interferon gamma-induced genes. Seems to bind to the promoter of CCL5, DMP1, IFIH1, IFITM1, IRF7, IRF9, LAMP3, OAS1, OAS2, OAS3 and STAT1. Transcriptional activity is independent of kinase activity.<ref>PMID:7588608</ref> <ref>PMID:8622688</ref> <ref>PMID:9480836</ref> <ref>PMID:9687510</ref> <ref>PMID:9649500</ref> <ref>PMID:9596579</ref> <ref>PMID:10637505</ref> <ref>PMID:10617468</ref> <ref>PMID:11154262</ref> <ref>PMID:12110590</ref> <ref>PMID:12356731</ref> <ref>PMID:12974390</ref> <ref>PMID:12794087</ref> <ref>PMID:12792650</ref> <ref>PMID:15184391</ref> <ref>PMID:15241487</ref> <ref>PMID:15952796</ref> <ref>PMID:15616583</ref> <ref>PMID:15788397</ref> <ref>PMID:15664191</ref> <ref>PMID:16581800</ref> <ref>PMID:19879846</ref> <ref>PMID:19265199</ref> | |||
<div style="background-color:#fffaf0;"> | |||
== Publication Abstract from PubMed == | |||
Linear motifs normally bind with only medium binding affinity (Kd of approximately 0.1-10 microM) to shallow protein-interaction surfaces on their binding partners. The crystallization of proteins in complex with linear motif-containing peptides is often challenging because the energy gained upon crystal packing between symmetry mates in the crystal may be on a par with the binding energy of the protein-peptide complex. Furthermore, for extracellular signal-regulated kinase 2 (ERK2) the protein-peptide docking surface is comprised of a small hydrophobic surface patch that is often engaged in the crystal packing of apo ERK2 crystals. Here, a rational surface-engineering approach is presented that involves mutating protein surface residues that are distant from the peptide-binding ERK2 docking groove to alanines. These ERK2 surface mutations decrease the chance of `unwanted' crystal packing of ERK2 and the approach led to the structure determination of ERK2 in complex with new docking peptides. These findings highlight the importance of negative selection in crystal engineering for weakly binding protein-peptide complexes. | |||
Protein-peptide complex crystallization: a case study on the ERK2 mitogen-activated protein kinase.,Gogl G, Toro I, Remenyi A Acta Crystallogr D Biol Crystallogr. 2013 Mar;69(Pt 3):486-9. doi:, 10.1107/S0907444912051062. Epub 2013 Feb 16. PMID:23519423<ref>PMID:23519423</ref> | |||
From MEDLINE®/PubMed®, a database of the U.S. National Library of Medicine.<br> | |||
</div> | |||
<div class="pdbe-citations 4h3p" style="background-color:#fffaf0;"></div> | |||
== | ==See Also== | ||
[[ | *[[Mitogen-activated protein kinase 3D structures|Mitogen-activated protein kinase 3D structures]] | ||
== References == | |||
<references/> | |||
__TOC__ | |||
</StructureSection> | |||
[[Category: Homo sapiens]] | [[Category: Homo sapiens]] | ||
[[Category: | [[Category: Large Structures]] | ||
[[Category: Gogl | [[Category: Gogl G]] | ||
[[Category: Remenyi | [[Category: Remenyi A]] | ||
[[Category: Toeroe | [[Category: Toeroe I]] | ||
Latest revision as of 17:04, 8 November 2023
Crystal structure of human ERK2 complexed with a MAPK docking peptideCrystal structure of human ERK2 complexed with a MAPK docking peptide
Structural highlights
FunctionMK01_HUMAN Serine/threonine kinase which acts as an essential component of the MAP kinase signal transduction pathway. MAPK1/ERK2 and MAPK3/ERK1 are the 2 MAPKs which play an important role in the MAPK/ERK cascade. They participate also in a signaling cascade initiated by activated KIT and KITLG/SCF. Depending on the cellular context, the MAPK/ERK cascade mediates diverse biological functions such as cell growth, adhesion, survival and differentiation through the regulation of transcription, translation, cytoskeletal rearrangements. The MAPK/ERK cascade plays also a role in initiation and regulation of meiosis, mitosis, and postmitotic functions in differentiated cells by phosphorylating a number of transcription factors. About 160 substrates have already been discovered for ERKs. Many of these substrates are localized in the nucleus, and seem to participate in the regulation of transcription upon stimulation. However, other substrates are found in the cytosol as well as in other cellular organelles, and those are responsible for processes such as translation, mitosis and apoptosis. Moreover, the MAPK/ERK cascade is also involved in the regulation of the endosomal dynamics, including lysosome processing and endosome cycling through the perinuclear recycling compartment (PNRC); as well as in the fragmentation of the Golgi apparatus during mitosis. The substrates include transcription factors (such as ATF2, BCL6, ELK1, ERF, FOS, HSF4 or SPZ1), cytoskeletal elements (such as CANX, CTTN, GJA1, MAP2, MAPT, PXN, SORBS3 or STMN1), regulators of apoptosis (such as BAD, BTG2, CASP9, DAPK1, IER3, MCL1 or PPARG), regulators of translation (such as EIF4EBP1) and a variety of other signaling-related molecules (like ARHGEF2, DCC, FRS2 or GRB10). Protein kinases (such as RAF1, RPS6KA1/RSK1, RPS6KA3/RSK2, RPS6KA2/RSK3, RPS6KA6/RSK4, SYK, MKNK1/MNK1, MKNK2/MNK2, RPS6KA5/MSK1, RPS6KA4/MSK2, MAPKAPK3 or MAPKAPK5) and phosphatases (such as DUSP1, DUSP4, DUSP6 or DUSP16) are other substrates which enable the propagation the MAPK/ERK signal to additional cytosolic and nuclear targets, thereby extending the specificity of the cascade. May play a role in the spindle assembly checkpoint.[1] [2] [3] [4] [5] [6] [7] [8] [9] [10] [11] [12] [13] [14] [15] [16] [17] [18] [19] [20] [21] [22] [23] Acts as a transcriptional repressor. Binds to a [GC]AAA[GC] consensus sequence. Repress the expression of interferon gamma-induced genes. Seems to bind to the promoter of CCL5, DMP1, IFIH1, IFITM1, IRF7, IRF9, LAMP3, OAS1, OAS2, OAS3 and STAT1. Transcriptional activity is independent of kinase activity.[24] [25] [26] [27] [28] [29] [30] [31] [32] [33] [34] [35] [36] [37] [38] [39] [40] [41] [42] [43] [44] [45] [46] Publication Abstract from PubMedLinear motifs normally bind with only medium binding affinity (Kd of approximately 0.1-10 microM) to shallow protein-interaction surfaces on their binding partners. The crystallization of proteins in complex with linear motif-containing peptides is often challenging because the energy gained upon crystal packing between symmetry mates in the crystal may be on a par with the binding energy of the protein-peptide complex. Furthermore, for extracellular signal-regulated kinase 2 (ERK2) the protein-peptide docking surface is comprised of a small hydrophobic surface patch that is often engaged in the crystal packing of apo ERK2 crystals. Here, a rational surface-engineering approach is presented that involves mutating protein surface residues that are distant from the peptide-binding ERK2 docking groove to alanines. These ERK2 surface mutations decrease the chance of `unwanted' crystal packing of ERK2 and the approach led to the structure determination of ERK2 in complex with new docking peptides. These findings highlight the importance of negative selection in crystal engineering for weakly binding protein-peptide complexes. Protein-peptide complex crystallization: a case study on the ERK2 mitogen-activated protein kinase.,Gogl G, Toro I, Remenyi A Acta Crystallogr D Biol Crystallogr. 2013 Mar;69(Pt 3):486-9. doi:, 10.1107/S0907444912051062. Epub 2013 Feb 16. PMID:23519423[47] From MEDLINE®/PubMed®, a database of the U.S. National Library of Medicine. See AlsoReferences
|
|