3waj: Difference between revisions
New page: '''Unreleased structure''' The entry 3waj is ON HOLD Authors: Matsumoto, S., Shimada, A., Kohda, D. Description: Crystal structure of the Archaeoglobus fulgidus oligosaccharyltransfera... |
No edit summary |
||
(5 intermediate revisions by the same user not shown) | |||
Line 1: | Line 1: | ||
The | ==Crystal structure of the Archaeoglobus fulgidus oligosaccharyltransferase (O29867_ARCFU) complex with Zn and sulfate== | ||
<StructureSection load='3waj' size='340' side='right'caption='[[3waj]], [[Resolution|resolution]] 2.50Å' scene=''> | |||
== Structural highlights == | |||
<table><tr><td colspan='2'>[[3waj]] is a 1 chain structure with sequence from [https://en.wikipedia.org/wiki/Archaeoglobus_fulgidus_DSM_4304 Archaeoglobus fulgidus DSM 4304]. Full crystallographic information is available from [http://oca.weizmann.ac.il/oca-bin/ocashort?id=3WAJ OCA]. For a <b>guided tour on the structure components</b> use [https://proteopedia.org/fgij/fg.htm?mol=3WAJ FirstGlance]. <br> | |||
</td></tr><tr id='method'><td class="sblockLbl"><b>[[Empirical_models|Method:]]</b></td><td class="sblockDat" id="methodDat">X-ray diffraction, [[Resolution|Resolution]] 2.501Å</td></tr> | |||
<tr id='ligand'><td class="sblockLbl"><b>[[Ligand|Ligands:]]</b></td><td class="sblockDat" id="ligandDat"><scene name='pdbligand=SO4:SULFATE+ION'>SO4</scene>, <scene name='pdbligand=ZN:ZINC+ION'>ZN</scene></td></tr> | |||
<tr id='resources'><td class="sblockLbl"><b>Resources:</b></td><td class="sblockDat"><span class='plainlinks'>[https://proteopedia.org/fgij/fg.htm?mol=3waj FirstGlance], [http://oca.weizmann.ac.il/oca-bin/ocaids?id=3waj OCA], [https://pdbe.org/3waj PDBe], [https://www.rcsb.org/pdb/explore.do?structureId=3waj RCSB], [https://www.ebi.ac.uk/pdbsum/3waj PDBsum], [https://prosat.h-its.org/prosat/prosatexe?pdbcode=3waj ProSAT]</span></td></tr> | |||
</table> | |||
== Function == | |||
[https://www.uniprot.org/uniprot/AGLB3_ARCFU AGLB3_ARCFU] Oligosaccharyl transferase (OST) that catalyzes the initial transfer of a defined glycan (a glucose-linked heptasaccharide composed of 3 Glc, 2 Man, 2 Gal and a sulfate for A.fulgidus AglB-L) from the lipid carrier dolichol-monophosphate to an asparagine residue within an Asn-X-Ser/Thr consensus motif in nascent polypeptide chains, the first step in protein N-glycosylation.<ref>PMID:24127570</ref> <ref>PMID:27015803</ref> <ref>PMID:27997792</ref> | |||
<div style="background-color:#fffaf0;"> | |||
== Publication Abstract from PubMed == | |||
Oligosaccharyltransferase transfers an oligosaccharide chain to the asparagine residues in proteins. The archaeal and eubacterial oligosaccharyltransferases are single subunit membrane enzymes, referred to as "AglB" (archaeal glycosylation B) and "PglB" (protein glycosylation B), respectively. Only one crystal structure of a full-length PglB has been solved. Here we report the crystal structures of the full-length AglB from a hyperthermophilic archaeon, Archaeoglobus fulgidus. The AglB and PglB proteins share the common overall topology of the 13 transmembrane helices, and a characteristic long plastic loop in the transmembrane region. This is the structural basis for the formation of the catalytic center, consisting of conserved acidic residues coordinating a divalent metal ion. In one crystal form, a sulfate ion was bound next to the metal ion. This structure appears to represent a dolichol-phosphate binding state, and suggests the release mechanism for the glycosylated product. The structure in the other crystal form corresponds to the resting state conformation with the well-ordered plastic loop in the transmembrane region. The overall structural similarity between the distantly related AglB and PglB proteins strongly indicates the conserved catalytic mechanism in the eukaryotic counterpart, the STT3 (stauroporine and temperature sensitivity 3) protein. The detailed structural comparison provided the dynamic view of the N-glycosylation reaction, involving the conversion between the structured and unstructured states of the plastic loop in the transmembrane region and the formation and collapse of the Ser/Thr-binding pocket in the C-terminal globular domain. | |||
Crystal structures of an archaeal oligosaccharyltransferase provide insights into the catalytic cycle of N-linked protein glycosylation.,Matsumoto S, Shimada A, Nyirenda J, Igura M, Kawano Y, Kohda D Proc Natl Acad Sci U S A. 2013 Oct 14. PMID:24127570<ref>PMID:24127570</ref> | |||
From MEDLINE®/PubMed®, a database of the U.S. National Library of Medicine.<br> | |||
</div> | |||
<div class="pdbe-citations 3waj" style="background-color:#fffaf0;"></div> | |||
==See Also== | |||
*[[Glycosyltransferase 3D structures|Glycosyltransferase 3D structures]] | |||
== References == | |||
<references/> | |||
__TOC__ | |||
</StructureSection> | |||
[[Category: Archaeoglobus fulgidus DSM 4304]] | |||
[[Category: Large Structures]] | |||
[[Category: Kohda D]] | |||
[[Category: Matsumoto S]] | |||
[[Category: Shimada A]] |