3ug0: Difference between revisions

From Proteopedia
Jump to navigation Jump to search
No edit summary
No edit summary
 
Line 3: Line 3:
<StructureSection load='3ug0' size='340' side='right'caption='[[3ug0]], [[Resolution|resolution]] 2.09&Aring;' scene=''>
<StructureSection load='3ug0' size='340' side='right'caption='[[3ug0]], [[Resolution|resolution]] 2.09&Aring;' scene=''>
== Structural highlights ==
== Structural highlights ==
<table><tr><td colspan='2'>[[3ug0]] is a 1 chain structure with sequence from [https://en.wikipedia.org/wiki/Aeqvi Aeqvi]. Full crystallographic information is available from [http://oca.weizmann.ac.il/oca-bin/ocashort?id=3UG0 OCA]. For a <b>guided tour on the structure components</b> use [https://proteopedia.org/fgij/fg.htm?mol=3UG0 FirstGlance]. <br>
<table><tr><td colspan='2'>[[3ug0]] is a 1 chain structure with sequence from [https://en.wikipedia.org/wiki/Aequorea_victoria Aequorea victoria]. Full crystallographic information is available from [http://oca.weizmann.ac.il/oca-bin/ocashort?id=3UG0 OCA]. For a <b>guided tour on the structure components</b> use [https://proteopedia.org/fgij/fg.htm?mol=3UG0 FirstGlance]. <br>
</td></tr><tr id='NonStdRes'><td class="sblockLbl"><b>[[Non-Standard_Residue|NonStd Res:]]</b></td><td class="sblockDat"><scene name='pdbligand=CRO:{2-[(1R,2R)-1-AMINO-2-HYDROXYPROPYL]-4-(4-HYDROXYBENZYLIDENE)-5-OXO-4,5-DIHYDRO-1H-IMIDAZOL-1-YL}ACETIC+ACID'>CRO</scene></td></tr>
</td></tr><tr id='method'><td class="sblockLbl"><b>[[Empirical_models|Method:]]</b></td><td class="sblockDat" id="methodDat">X-ray diffraction, [[Resolution|Resolution]] 2.093&#8491;</td></tr>
<tr id='related'><td class="sblockLbl"><b>[[Related_structure|Related:]]</b></td><td class="sblockDat"><div style='overflow: auto; max-height: 3em;'>[[3ufz|3ufz]]</div></td></tr>
<tr id='ligand'><td class="sblockLbl"><b>[[Ligand|Ligands:]]</b></td><td class="sblockDat" id="ligandDat"><scene name='pdbligand=CRO:{2-[(1R,2R)-1-AMINO-2-HYDROXYPROPYL]-4-(4-HYDROXYBENZYLIDENE)-5-OXO-4,5-DIHYDRO-1H-IMIDAZOL-1-YL}ACETIC+ACID'>CRO</scene></td></tr>
<tr id='gene'><td class="sblockLbl"><b>[[Gene|Gene:]]</b></td><td class="sblockDat">GFP ([https://www.ncbi.nlm.nih.gov/Taxonomy/Browser/wwwtax.cgi?mode=Info&srchmode=5&id=6100 AEQVI])</td></tr>
<tr id='resources'><td class="sblockLbl"><b>Resources:</b></td><td class="sblockDat"><span class='plainlinks'>[https://proteopedia.org/fgij/fg.htm?mol=3ug0 FirstGlance], [http://oca.weizmann.ac.il/oca-bin/ocaids?id=3ug0 OCA], [https://pdbe.org/3ug0 PDBe], [https://www.rcsb.org/pdb/explore.do?structureId=3ug0 RCSB], [https://www.ebi.ac.uk/pdbsum/3ug0 PDBsum], [https://prosat.h-its.org/prosat/prosatexe?pdbcode=3ug0 ProSAT]</span></td></tr>
<tr id='resources'><td class="sblockLbl"><b>Resources:</b></td><td class="sblockDat"><span class='plainlinks'>[https://proteopedia.org/fgij/fg.htm?mol=3ug0 FirstGlance], [http://oca.weizmann.ac.il/oca-bin/ocaids?id=3ug0 OCA], [https://pdbe.org/3ug0 PDBe], [https://www.rcsb.org/pdb/explore.do?structureId=3ug0 RCSB], [https://www.ebi.ac.uk/pdbsum/3ug0 PDBsum], [https://prosat.h-its.org/prosat/prosatexe?pdbcode=3ug0 ProSAT]</span></td></tr>
</table>
</table>
== Function ==
== Function ==
[[https://www.uniprot.org/uniprot/GFP_AEQVI GFP_AEQVI]] Energy-transfer acceptor. Its role is to transduce the blue chemiluminescence of the protein aequorin into green fluorescent light by energy transfer. Fluoresces in vivo upon receiving energy from the Ca(2+)-activated photoprotein aequorin.  
[https://www.uniprot.org/uniprot/GFP_AEQVI GFP_AEQVI] Energy-transfer acceptor. Its role is to transduce the blue chemiluminescence of the protein aequorin into green fluorescent light by energy transfer. Fluoresces in vivo upon receiving energy from the Ca(2+)-activated photoprotein aequorin.
<div style="background-color:#fffaf0;">
<div style="background-color:#fffaf0;">
== Publication Abstract from PubMed ==
== Publication Abstract from PubMed ==
Line 27: Line 26:
__TOC__
__TOC__
</StructureSection>
</StructureSection>
[[Category: Aeqvi]]
[[Category: Aequorea victoria]]
[[Category: Large Structures]]
[[Category: Large Structures]]
[[Category: Araiso, Y]]
[[Category: Araiso Y]]
[[Category: Kawahara-Kobayashi, A]]
[[Category: Kawahara-Kobayashi A]]
[[Category: Kiga, D]]
[[Category: Kiga D]]
[[Category: Kigawa, T]]
[[Category: Kigawa T]]
[[Category: Matsuda, T]]
[[Category: Matsuda T]]
[[Category: Nureki, O]]
[[Category: Nureki O]]
[[Category: Yokoyama, S]]
[[Category: Yokoyama S]]
[[Category: Fluorescent protein]]
[[Category: Green fluorescent protein]]

Latest revision as of 20:35, 1 November 2023

Crystal structure of a Trp-less green fluorescent protein translated by the simplified genetic codeCrystal structure of a Trp-less green fluorescent protein translated by the simplified genetic code

Structural highlights

3ug0 is a 1 chain structure with sequence from Aequorea victoria. Full crystallographic information is available from OCA. For a guided tour on the structure components use FirstGlance.
Method:X-ray diffraction, Resolution 2.093Å
Ligands:
Resources:FirstGlance, OCA, PDBe, RCSB, PDBsum, ProSAT

Function

GFP_AEQVI Energy-transfer acceptor. Its role is to transduce the blue chemiluminescence of the protein aequorin into green fluorescent light by energy transfer. Fluoresces in vivo upon receiving energy from the Ca(2+)-activated photoprotein aequorin.

Publication Abstract from PubMed

At earlier stages in the evolution of the universal genetic code, fewer than 20 amino acids were considered to be used. Although this notion is supported by a wide range of data, the actual existence and function of the genetic codes with a limited set of canonical amino acids have not been addressed experimentally, in contrast to the successful development of the expanded codes. Here, we constructed artificial genetic codes involving a reduced alphabet. In one of the codes, a tRNA(Ala) variant with the Trp anticodon reassigns alanine to an unassigned UGG codon in the Escherichia coli S30 cell-free translation system lacking tryptophan. We confirmed that the efficiency and accuracy of protein synthesis by this Trp-lacking code were comparable to those by the universal genetic code, by an amino acid composition analysis, green fluorescent protein fluorescence measurements and the crystal structure determination. We also showed that another code, in which UGU/UGC codons are assigned to Ser, synthesizes an active enzyme. This method will provide not only new insights into primordial genetic codes, but also an essential protein engineering tool for the assessment of the early stages of protein evolution and for the improvement of pharmaceuticals.

Simplification of the genetic code: restricted diversity of genetically encoded amino acids.,Kawahara-Kobayashi A, Masuda A, Araiso Y, Sakai Y, Kohda A, Uchiyama M, Asami S, Matsuda T, Ishitani R, Dohmae N, Yokoyama S, Kigawa T, Nureki O, Kiga D Nucleic Acids Res. 2012 Aug 21. PMID:22909996[1]

From MEDLINE®/PubMed®, a database of the U.S. National Library of Medicine.

See Also

References

  1. Kawahara-Kobayashi A, Masuda A, Araiso Y, Sakai Y, Kohda A, Uchiyama M, Asami S, Matsuda T, Ishitani R, Dohmae N, Yokoyama S, Kigawa T, Nureki O, Kiga D. Simplification of the genetic code: restricted diversity of genetically encoded amino acids. Nucleic Acids Res. 2012 Aug 21. PMID:22909996 doi:10.1093/nar/gks786

3ug0, resolution 2.09Å

Drag the structure with the mouse to rotate

Proteopedia Page Contributors and Editors (what is this?)Proteopedia Page Contributors and Editors (what is this?)

OCA