3t10: Difference between revisions

From Proteopedia
Jump to navigation Jump to search
No edit summary
No edit summary
 
(7 intermediate revisions by the same user not shown)
Line 1: Line 1:
[[Image:3t10.png|left|200px]]


<!--
==HSP90 N-terminal domain bound to ACP==
The line below this paragraph, containing "STRUCTURE_3t10", creates the "Structure Box" on the page.
<StructureSection load='3t10' size='340' side='right'caption='[[3t10]], [[Resolution|resolution]] 1.24&Aring;' scene=''>
You may change the PDB parameter (which sets the PDB file loaded into the applet)
== Structural highlights ==
or the SCENE parameter (which sets the initial scene displayed when the page is loaded),
<table><tr><td colspan='2'>[[3t10]] is a 1 chain structure with sequence from [https://en.wikipedia.org/wiki/Homo_sapiens Homo sapiens]. Full crystallographic information is available from [http://oca.weizmann.ac.il/oca-bin/ocashort?id=3T10 OCA]. For a <b>guided tour on the structure components</b> use [https://proteopedia.org/fgij/fg.htm?mol=3T10 FirstGlance]. <br>
or leave the SCENE parameter empty for the default display.
</td></tr><tr id='method'><td class="sblockLbl"><b>[[Empirical_models|Method:]]</b></td><td class="sblockDat" id="methodDat">X-ray diffraction, [[Resolution|Resolution]] 1.24&#8491;</td></tr>
-->
<tr id='ligand'><td class="sblockLbl"><b>[[Ligand|Ligands:]]</b></td><td class="sblockDat" id="ligandDat"><scene name='pdbligand=ACP:PHOSPHOMETHYLPHOSPHONIC+ACID+ADENYLATE+ESTER'>ACP</scene>, <scene name='pdbligand=MG:MAGNESIUM+ION'>MG</scene></td></tr>
{{STRUCTURE_3t10|  PDB=3t10  |  SCENE=  }}
<tr id='resources'><td class="sblockLbl"><b>Resources:</b></td><td class="sblockDat"><span class='plainlinks'>[https://proteopedia.org/fgij/fg.htm?mol=3t10 FirstGlance], [http://oca.weizmann.ac.il/oca-bin/ocaids?id=3t10 OCA], [https://pdbe.org/3t10 PDBe], [https://www.rcsb.org/pdb/explore.do?structureId=3t10 RCSB], [https://www.ebi.ac.uk/pdbsum/3t10 PDBsum], [https://prosat.h-its.org/prosat/prosatexe?pdbcode=3t10 ProSAT]</span></td></tr>
</table>
== Function ==
[https://www.uniprot.org/uniprot/HS90A_HUMAN HS90A_HUMAN] Molecular chaperone that promotes the maturation, structural maintenance and proper regulation of specific target proteins involved for instance in cell cycle control and signal transduction. Undergoes a functional cycle that is linked to its ATPase activity. This cycle probably induces conformational changes in the client proteins, thereby causing their activation. Interacts dynamically with various co-chaperones that modulate its substrate recognition, ATPase cycle and chaperone function.<ref>PMID:15937123</ref> <ref>PMID:11274138</ref>
<div style="background-color:#fffaf0;">
== Publication Abstract from PubMed ==
The activation of molecular chaperone heat-shock protein 90 (Hsp90) is dependent on ATP binding and hydrolysis, which occurs in the N-terminal domains of protein. Here, we have determined three crystal structures of the N-terminal domain of human Hsp90 in native and in complex with ATP and ATP analog, providing a clear view of the catalytic mechanism of ATP hydrolysis by Hsp90. Additionally, the binding of ATP leads the N-terminal domains to be an intermediate state that could be used to partially explain why the isolated N-terminal domain of Hsp90 has very weak ATP hydrolytic activity.


===HSP90 N-terminal domain bound to ACP===
Structure insights into mechanisms of ATP hydrolysis and the activation of human heat-shock protein 90.,Li J, Sun L, Xu C, Yu F, Zhou H, Zhao Y, Zhang J, Cai J, Mao C, Tang L, Xu Y, He J Acta Biochim Biophys Sin (Shanghai). 2012 Apr;44(4):300-6. doi:, 10.1093/abbs/gms001. Epub 2012 Feb 7. PMID:22318716<ref>PMID:22318716</ref>


From MEDLINE&reg;/PubMed&reg;, a database of the U.S. National Library of Medicine.<br>
</div>
<div class="pdbe-citations 3t10" style="background-color:#fffaf0;"></div>


==About this Structure==
==See Also==
[[3t10]] is a 1 chain structure with sequence from [http://en.wikipedia.org/wiki/Homo_sapiens Homo sapiens]. Full crystallographic information is available from [http://oca.weizmann.ac.il/oca-bin/ocashort?id=3T10 OCA].
*[[Heat Shock Protein structures|Heat Shock Protein structures]]
== References ==
<references/>
__TOC__
</StructureSection>
[[Category: Homo sapiens]]
[[Category: Homo sapiens]]
[[Category: Li, J.]]
[[Category: Large Structures]]
[[Category: Atpase]]
[[Category: Li J]]
[[Category: Chaperone]]

Latest revision as of 20:28, 1 November 2023

HSP90 N-terminal domain bound to ACPHSP90 N-terminal domain bound to ACP

Structural highlights

3t10 is a 1 chain structure with sequence from Homo sapiens. Full crystallographic information is available from OCA. For a guided tour on the structure components use FirstGlance.
Method:X-ray diffraction, Resolution 1.24Å
Ligands:,
Resources:FirstGlance, OCA, PDBe, RCSB, PDBsum, ProSAT

Function

HS90A_HUMAN Molecular chaperone that promotes the maturation, structural maintenance and proper regulation of specific target proteins involved for instance in cell cycle control and signal transduction. Undergoes a functional cycle that is linked to its ATPase activity. This cycle probably induces conformational changes in the client proteins, thereby causing their activation. Interacts dynamically with various co-chaperones that modulate its substrate recognition, ATPase cycle and chaperone function.[1] [2]

Publication Abstract from PubMed

The activation of molecular chaperone heat-shock protein 90 (Hsp90) is dependent on ATP binding and hydrolysis, which occurs in the N-terminal domains of protein. Here, we have determined three crystal structures of the N-terminal domain of human Hsp90 in native and in complex with ATP and ATP analog, providing a clear view of the catalytic mechanism of ATP hydrolysis by Hsp90. Additionally, the binding of ATP leads the N-terminal domains to be an intermediate state that could be used to partially explain why the isolated N-terminal domain of Hsp90 has very weak ATP hydrolytic activity.

Structure insights into mechanisms of ATP hydrolysis and the activation of human heat-shock protein 90.,Li J, Sun L, Xu C, Yu F, Zhou H, Zhao Y, Zhang J, Cai J, Mao C, Tang L, Xu Y, He J Acta Biochim Biophys Sin (Shanghai). 2012 Apr;44(4):300-6. doi:, 10.1093/abbs/gms001. Epub 2012 Feb 7. PMID:22318716[3]

From MEDLINE®/PubMed®, a database of the U.S. National Library of Medicine.

See Also

References

  1. Martinez-Ruiz A, Villanueva L, Gonzalez de Orduna C, Lopez-Ferrer D, Higueras MA, Tarin C, Rodriguez-Crespo I, Vazquez J, Lamas S. S-nitrosylation of Hsp90 promotes the inhibition of its ATPase and endothelial nitric oxide synthase regulatory activities. Proc Natl Acad Sci U S A. 2005 Jun 14;102(24):8525-30. Epub 2005 Jun 3. PMID:15937123 doi:10.1073/pnas.0407294102
  2. Forsythe HL, Jarvis JL, Turner JW, Elmore LW, Holt SE. Stable association of hsp90 and p23, but Not hsp70, with active human telomerase. J Biol Chem. 2001 May 11;276(19):15571-4. Epub 2001 Mar 23. PMID:11274138 doi:10.1074/jbc.C100055200
  3. Li J, Sun L, Xu C, Yu F, Zhou H, Zhao Y, Zhang J, Cai J, Mao C, Tang L, Xu Y, He J. Structure insights into mechanisms of ATP hydrolysis and the activation of human heat-shock protein 90. Acta Biochim Biophys Sin (Shanghai). 2012 Apr;44(4):300-6. doi:, 10.1093/abbs/gms001. Epub 2012 Feb 7. PMID:22318716 doi:http://dx.doi.org/10.1093/abbs/gms001

3t10, resolution 1.24Å

Drag the structure with the mouse to rotate

Proteopedia Page Contributors and Editors (what is this?)Proteopedia Page Contributors and Editors (what is this?)

OCA