3me4: Difference between revisions
No edit summary |
No edit summary |
||
(6 intermediate revisions by the same user not shown) | |||
Line 1: | Line 1: | ||
==Crystal structure of mouse RANK== | |||
<StructureSection load='3me4' size='340' side='right'caption='[[3me4]], [[Resolution|resolution]] 2.01Å' scene=''> | |||
== Structural highlights == | |||
<table><tr><td colspan='2'>[[3me4]] is a 2 chain structure with sequence from [https://en.wikipedia.org/wiki/Mus_musculus Mus musculus]. Full crystallographic information is available from [http://oca.weizmann.ac.il/oca-bin/ocashort?id=3ME4 OCA]. For a <b>guided tour on the structure components</b> use [https://proteopedia.org/fgij/fg.htm?mol=3ME4 FirstGlance]. <br> | |||
</td></tr><tr id='method'><td class="sblockLbl"><b>[[Empirical_models|Method:]]</b></td><td class="sblockDat" id="methodDat">X-ray diffraction, [[Resolution|Resolution]] 2.01Å</td></tr> | |||
<tr id='ligand'><td class="sblockLbl"><b>[[Ligand|Ligands:]]</b></td><td class="sblockDat" id="ligandDat"><scene name='pdbligand=ACT:ACETATE+ION'>ACT</scene>, <scene name='pdbligand=CL:CHLORIDE+ION'>CL</scene>, <scene name='pdbligand=GOL:GLYCEROL'>GOL</scene>, <scene name='pdbligand=NA:SODIUM+ION'>NA</scene>, <scene name='pdbligand=SO4:SULFATE+ION'>SO4</scene></td></tr> | |||
<tr id='resources'><td class="sblockLbl"><b>Resources:</b></td><td class="sblockDat"><span class='plainlinks'>[https://proteopedia.org/fgij/fg.htm?mol=3me4 FirstGlance], [http://oca.weizmann.ac.il/oca-bin/ocaids?id=3me4 OCA], [https://pdbe.org/3me4 PDBe], [https://www.rcsb.org/pdb/explore.do?structureId=3me4 RCSB], [https://www.ebi.ac.uk/pdbsum/3me4 PDBsum], [https://prosat.h-its.org/prosat/prosatexe?pdbcode=3me4 ProSAT]</span></td></tr> | |||
</table> | |||
== Function == | |||
[https://www.uniprot.org/uniprot/TNR11_MOUSE TNR11_MOUSE] Receptor for TNFSF11/RANKL/TRANCE/OPGL; essential for RANKL-mediated osteoclastogenesis. Involved in the regulation of interactions between T-cells and dendritic cells.<ref>PMID:9878548</ref> <ref>PMID:20483727</ref> | |||
== Evolutionary Conservation == | |||
[[Image:Consurf_key_small.gif|200px|right]] | |||
Check<jmol> | |||
<jmolCheckbox> | |||
<scriptWhenChecked>; select protein; define ~consurf_to_do selected; consurf_initial_scene = true; script "/wiki/ConSurf/me/3me4_consurf.spt"</scriptWhenChecked> | |||
<scriptWhenUnchecked>script /wiki/extensions/Proteopedia/spt/initialview01.spt</scriptWhenUnchecked> | |||
<text>to colour the structure by Evolutionary Conservation</text> | |||
</jmolCheckbox> | |||
</jmol>, as determined by [http://consurfdb.tau.ac.il/ ConSurfDB]. You may read the [[Conservation%2C_Evolutionary|explanation]] of the method and the full data available from [http://bental.tau.ac.il/new_ConSurfDB/main_output.php?pdb_ID=3me4 ConSurf]. | |||
<div style="clear:both"></div> | |||
<div style="background-color:#fffaf0;"> | |||
== Publication Abstract from PubMed == | |||
Bone remodeling involves bone resorption by osteoclasts and synthesis by osteoblasts and is tightly regulated by the receptor activator of the NF-kappaB ligand (RANKL)/receptor activator of the NF-kappaB (RANK)/osteoprotegerin molecular triad. RANKL, a member of the TNF superfamily, induces osteoclast differentiation, activation and survival upon interaction with its receptor RANK. The decoy receptor osteoprotegerin inhibits osteoclast formation by binding to RANKL. Imbalance in this molecular triad can result in diseases, including osteoporosis and rheumatoid arthritis. In this study, we report the crystal structures of unliganded RANK and its complex with RANKL and elucidation of critical residues for the function of the receptor pair. RANK represents the longest TNFR with four full cysteine-rich domains (CRDs) in which the CRD4 is stabilized by a sodium ion and a rigid linkage with CRD3. On association, RANK moves via a hinge region between the CRD2 and CRD3 to make close contact with RANKL; a significant structural change previously unseen in the engagement of TNFR superfamily 1A with its ligand. The high-affinity interaction between RANK and RANKL, maintained by continuous contact between the pair rather than the patched interaction commonly observed, is necessary for the function because a slightly reduced affinity induced by mutation produces significant disruption of osteoclast formation. The structures of RANK and RANKL-RANK complex and the biological data presented in the paper are essential for not only our understanding of the specific nature of the signaling mechanism and of disease-related mutations found in patients but also structure based drug design. | |||
Structural and functional insights of RANKL-RANK interaction and signaling.,Liu C, Walter TS, Huang P, Zhang S, Zhu X, Wu Y, Wedderburn LR, Tang P, Owens RJ, Stuart DI, Ren J, Gao B J Immunol. 2010 Jun 15;184(12):6910-9. Epub 2010 May 14. PMID:20483727<ref>PMID:20483727</ref> | |||
From MEDLINE®/PubMed®, a database of the U.S. National Library of Medicine.<br> | |||
</div> | |||
<div class="pdbe-citations 3me4" style="background-color:#fffaf0;"></div> | |||
==See Also== | |||
*[[Tumor necrosis factor receptor 3D structures|Tumor necrosis factor receptor 3D structures]] | |||
== References == | |||
<references/> | |||
__TOC__ | |||
</StructureSection> | |||
[[Category: Large Structures]] | |||
[[Category: Mus musculus]] | |||
[[Category: Gao B]] | |||
[[Category: Liu C]] | |||
[[Category: Owens RJ]] | |||
[[Category: Ren J]] | |||
[[Category: Stuart DI]] | |||
[[Category: Walter SW]] | |||
[[Category: Wu Y]] | |||
[[Category: Zhu X]] |
Latest revision as of 19:32, 1 November 2023
Crystal structure of mouse RANKCrystal structure of mouse RANK
Structural highlights
FunctionTNR11_MOUSE Receptor for TNFSF11/RANKL/TRANCE/OPGL; essential for RANKL-mediated osteoclastogenesis. Involved in the regulation of interactions between T-cells and dendritic cells.[1] [2] Evolutionary Conservation![]() Check, as determined by ConSurfDB. You may read the explanation of the method and the full data available from ConSurf. Publication Abstract from PubMedBone remodeling involves bone resorption by osteoclasts and synthesis by osteoblasts and is tightly regulated by the receptor activator of the NF-kappaB ligand (RANKL)/receptor activator of the NF-kappaB (RANK)/osteoprotegerin molecular triad. RANKL, a member of the TNF superfamily, induces osteoclast differentiation, activation and survival upon interaction with its receptor RANK. The decoy receptor osteoprotegerin inhibits osteoclast formation by binding to RANKL. Imbalance in this molecular triad can result in diseases, including osteoporosis and rheumatoid arthritis. In this study, we report the crystal structures of unliganded RANK and its complex with RANKL and elucidation of critical residues for the function of the receptor pair. RANK represents the longest TNFR with four full cysteine-rich domains (CRDs) in which the CRD4 is stabilized by a sodium ion and a rigid linkage with CRD3. On association, RANK moves via a hinge region between the CRD2 and CRD3 to make close contact with RANKL; a significant structural change previously unseen in the engagement of TNFR superfamily 1A with its ligand. The high-affinity interaction between RANK and RANKL, maintained by continuous contact between the pair rather than the patched interaction commonly observed, is necessary for the function because a slightly reduced affinity induced by mutation produces significant disruption of osteoclast formation. The structures of RANK and RANKL-RANK complex and the biological data presented in the paper are essential for not only our understanding of the specific nature of the signaling mechanism and of disease-related mutations found in patients but also structure based drug design. Structural and functional insights of RANKL-RANK interaction and signaling.,Liu C, Walter TS, Huang P, Zhang S, Zhu X, Wu Y, Wedderburn LR, Tang P, Owens RJ, Stuart DI, Ren J, Gao B J Immunol. 2010 Jun 15;184(12):6910-9. Epub 2010 May 14. PMID:20483727[3] From MEDLINE®/PubMed®, a database of the U.S. National Library of Medicine. See AlsoReferences
|
|