3lfo: Difference between revisions

From Proteopedia
Jump to navigation Jump to search
No edit summary
No edit summary
 
(2 intermediate revisions by the same user not shown)
Line 1: Line 1:
==Crystal structure of T. celer L30e E90A/R92A variant==
==Crystal structure of T. celer L30e E90A/R92A variant==
<StructureSection load='3lfo' size='340' side='right' caption='[[3lfo]], [[Resolution|resolution]] 1.80&Aring;' scene=''>
<StructureSection load='3lfo' size='340' side='right'caption='[[3lfo]], [[Resolution|resolution]] 1.80&Aring;' scene=''>
== Structural highlights ==
== Structural highlights ==
<table><tr><td colspan='2'>[[3lfo]] is a 1 chain structure with sequence from [http://en.wikipedia.org/wiki/Thermococcus_celer Thermococcus celer]. Full crystallographic information is available from [http://oca.weizmann.ac.il/oca-bin/ocashort?id=3LFO OCA]. For a <b>guided tour on the structure components</b> use [http://oca.weizmann.ac.il/oca-docs/fgij/fg.htm?mol=3LFO FirstGlance]. <br>
<table><tr><td colspan='2'>[[3lfo]] is a 1 chain structure with sequence from [https://en.wikipedia.org/wiki/Thermococcus_celer Thermococcus celer]. Full crystallographic information is available from [http://oca.weizmann.ac.il/oca-bin/ocashort?id=3LFO OCA]. For a <b>guided tour on the structure components</b> use [https://proteopedia.org/fgij/fg.htm?mol=3LFO FirstGlance]. <br>
</td></tr><tr id='related'><td class="sblockLbl"><b>[[Related_structure|Related:]]</b></td><td class="sblockDat">[[1h7m|1h7m]]</td></tr>
</td></tr><tr id='method'><td class="sblockLbl"><b>[[Empirical_models|Method:]]</b></td><td class="sblockDat" id="methodDat">X-ray diffraction, [[Resolution|Resolution]] 1.8&#8491;</td></tr>
<tr id='gene'><td class="sblockLbl"><b>[[Gene|Gene:]]</b></td><td class="sblockDat">rpl30e, rpl30 ([http://www.ncbi.nlm.nih.gov/Taxonomy/Browser/wwwtax.cgi?mode=Info&srchmode=5&id=2264 Thermococcus celer])</td></tr>
<tr id='resources'><td class="sblockLbl"><b>Resources:</b></td><td class="sblockDat"><span class='plainlinks'>[https://proteopedia.org/fgij/fg.htm?mol=3lfo FirstGlance], [http://oca.weizmann.ac.il/oca-bin/ocaids?id=3lfo OCA], [https://pdbe.org/3lfo PDBe], [https://www.rcsb.org/pdb/explore.do?structureId=3lfo RCSB], [https://www.ebi.ac.uk/pdbsum/3lfo PDBsum], [https://prosat.h-its.org/prosat/prosatexe?pdbcode=3lfo ProSAT]</span></td></tr>
<tr id='resources'><td class="sblockLbl"><b>Resources:</b></td><td class="sblockDat"><span class='plainlinks'>[http://oca.weizmann.ac.il/oca-docs/fgij/fg.htm?mol=3lfo FirstGlance], [http://oca.weizmann.ac.il/oca-bin/ocaids?id=3lfo OCA], [http://www.rcsb.org/pdb/explore.do?structureId=3lfo RCSB], [http://www.ebi.ac.uk/pdbsum/3lfo PDBsum]</span></td></tr>
</table>
</table>
== Function ==
[https://www.uniprot.org/uniprot/RL30E_THECE RL30E_THECE]
== Evolutionary Conservation ==
== Evolutionary Conservation ==
[[Image:Consurf_key_small.gif|200px|right]]
[[Image:Consurf_key_small.gif|200px|right]]
Check<jmol>
Check<jmol>
   <jmolCheckbox>
   <jmolCheckbox>
     <scriptWhenChecked>select protein; define ~consurf_to_do selected; consurf_initial_scene = true; script "/wiki/ConSurf/lf/3lfo_consurf.spt"</scriptWhenChecked>
     <scriptWhenChecked>; select protein; define ~consurf_to_do selected; consurf_initial_scene = true; script "/wiki/ConSurf/lf/3lfo_consurf.spt"</scriptWhenChecked>
     <scriptWhenUnchecked>script /wiki/extensions/Proteopedia/spt/initialview01.spt</scriptWhenUnchecked>
     <scriptWhenUnchecked>script /wiki/extensions/Proteopedia/spt/initialview01.spt</scriptWhenUnchecked>
     <text>to colour the structure by Evolutionary Conservation</text>
     <text>to colour the structure by Evolutionary Conservation</text>
   </jmolCheckbox>
   </jmolCheckbox>
</jmol>, as determined by [http://consurfdb.tau.ac.il/ ConSurfDB]. You may read the [[Conservation%2C_Evolutionary|explanation]] of the method and the full data available from [http://bental.tau.ac.il/new_ConSurfDB/chain_selection.php?pdb_ID=2ata ConSurf].
</jmol>, as determined by [http://consurfdb.tau.ac.il/ ConSurfDB]. You may read the [[Conservation%2C_Evolutionary|explanation]] of the method and the full data available from [http://bental.tau.ac.il/new_ConSurfDB/main_output.php?pdb_ID=3lfo ConSurf].
<div style="clear:both"></div>
<div style="clear:both"></div>
<div style="background-color:#fffaf0;">
<div style="background-color:#fffaf0;">
Line 25: Line 27:
From MEDLINE&reg;/PubMed&reg;, a database of the U.S. National Library of Medicine.<br>
From MEDLINE&reg;/PubMed&reg;, a database of the U.S. National Library of Medicine.<br>
</div>
</div>
<div class="pdbe-citations 3lfo" style="background-color:#fffaf0;"></div>
== References ==
== References ==
<references/>
<references/>
__TOC__
__TOC__
</StructureSection>
</StructureSection>
[[Category: Large Structures]]
[[Category: Thermococcus celer]]
[[Category: Thermococcus celer]]
[[Category: Chan, C H]]
[[Category: Chan CH]]
[[Category: Wong, K B]]
[[Category: Wong KB]]
[[Category: Globular protein]]
[[Category: L30e]]
[[Category: Ribosomal protein]]
[[Category: Thermophilic]]

Latest revision as of 19:23, 1 November 2023

Crystal structure of T. celer L30e E90A/R92A variantCrystal structure of T. celer L30e E90A/R92A variant

Structural highlights

3lfo is a 1 chain structure with sequence from Thermococcus celer. Full crystallographic information is available from OCA. For a guided tour on the structure components use FirstGlance.
Method:X-ray diffraction, Resolution 1.8Å
Resources:FirstGlance, OCA, PDBe, RCSB, PDBsum, ProSAT

Function

RL30E_THECE

Evolutionary Conservation

Check, as determined by ConSurfDB. You may read the explanation of the method and the full data available from ConSurf.

Publication Abstract from PubMed

Most thermophilic proteins tend to have more salt bridges, and achieve higher thermostability by up-shifting and broadening their protein stability curves. While the stabilizing effect of salt-bridge has been extensively studied, experimental data on how salt-bridge influences protein stability curves are scarce. Here, we used double mutant cycles to determine the temperature-dependency of the pair-wise interaction energy and the contribution of salt-bridges to DeltaC(p) in a thermophilic ribosomal protein L30e. Our results showed that the pair-wise interaction energies for the salt-bridges E6/R92 and E62/K46 were stabilizing and insensitive to temperature changes from 298 to 348 K. On the other hand, the pair-wise interaction energies between the control long-range ion-pair of E90/R92 were negligible. The DeltaC(p) of all single and double mutants were determined by Gibbs-Helmholtz and Kirchhoff analyses. We showed that the two stabilizing salt-bridges contributed to a reduction of DeltaC(p) by 0.8-1.0 kJ mol(1) K(1). Taken together, our results suggest that the extra salt-bridges found in thermophilic proteins enhance the thermostability of proteins by reducing DeltaC(p), leading to the up-shifting and broadening of the protein stability curves.

Stabilizing salt-bridge enhances protein thermostability by reducing the heat capacity change of unfolding.,Chan CH, Yu TH, Wong KB PLoS One. 2011;6(6):e21624. Epub 2011 Jun 24. PMID:21720566[1]

From MEDLINE®/PubMed®, a database of the U.S. National Library of Medicine.

References

  1. Chan CH, Yu TH, Wong KB. Stabilizing salt-bridge enhances protein thermostability by reducing the heat capacity change of unfolding. PLoS One. 2011;6(6):e21624. Epub 2011 Jun 24. PMID:21720566 doi:10.1371/journal.pone.0021624

3lfo, resolution 1.80Å

Drag the structure with the mouse to rotate

Proteopedia Page Contributors and Editors (what is this?)Proteopedia Page Contributors and Editors (what is this?)

OCA