3hf2: Difference between revisions
No edit summary |
No edit summary |
||
(9 intermediate revisions by the same user not shown) | |||
Line 1: | Line 1: | ||
< | ==Crystal structure of the I401P mutant of cytochrome P450 BM3== | ||
<StructureSection load='3hf2' size='340' side='right'caption='[[3hf2]], [[Resolution|resolution]] 2.20Å' scene=''> | |||
== Structural highlights == | |||
<table><tr><td colspan='2'>[[3hf2]] is a 2 chain structure with sequence from [https://en.wikipedia.org/wiki/Priestia_megaterium Priestia megaterium]. Full crystallographic information is available from [http://oca.weizmann.ac.il/oca-bin/ocashort?id=3HF2 OCA]. For a <b>guided tour on the structure components</b> use [https://proteopedia.org/fgij/fg.htm?mol=3HF2 FirstGlance]. <br> | |||
</td></tr><tr id='method'><td class="sblockLbl"><b>[[Empirical_models|Method:]]</b></td><td class="sblockDat" id="methodDat">X-ray diffraction, [[Resolution|Resolution]] 2.2Å</td></tr> | |||
- | <tr id='ligand'><td class="sblockLbl"><b>[[Ligand|Ligands:]]</b></td><td class="sblockDat" id="ligandDat"><scene name='pdbligand=HEM:PROTOPORPHYRIN+IX+CONTAINING+FE'>HEM</scene></td></tr> | ||
<tr id='resources'><td class="sblockLbl"><b>Resources:</b></td><td class="sblockDat"><span class='plainlinks'>[https://proteopedia.org/fgij/fg.htm?mol=3hf2 FirstGlance], [http://oca.weizmann.ac.il/oca-bin/ocaids?id=3hf2 OCA], [https://pdbe.org/3hf2 PDBe], [https://www.rcsb.org/pdb/explore.do?structureId=3hf2 RCSB], [https://www.ebi.ac.uk/pdbsum/3hf2 PDBsum], [https://prosat.h-its.org/prosat/prosatexe?pdbcode=3hf2 ProSAT]</span></td></tr> | |||
</table> | |||
== Function == | |||
[https://www.uniprot.org/uniprot/CPXB_PRIM2 CPXB_PRIM2] Functions as a fatty acid monooxygenase (PubMed:3106359, PubMed:1727637, PubMed:16566047, PubMed:7578081, PubMed:11695892, PubMed:14653735, PubMed:16403573, PubMed:18004886, PubMed:17077084, PubMed:17868686, PubMed:18298086, PubMed:18619466, PubMed:18721129, PubMed:19492389, PubMed:20180779, PubMed:21110374, PubMed:21875028). Catalyzes hydroxylation of fatty acids at omega-1, omega-2 and omega-3 positions (PubMed:1727637, PubMed:21875028). Shows activity toward medium and long-chain fatty acids, with optimum chain lengths of 12, 14 and 16 carbons (lauric, myristic, and palmitic acids). Able to metabolize some of these primary metabolites to secondary and tertiary products (PubMed:1727637). Marginal activity towards short chain lengths of 8-10 carbons (PubMed:1727637, PubMed:18619466). Hydroxylates highly branched fatty acids, which play an essential role in membrane fluidity regulation (PubMed:16566047). Also displays a NADPH-dependent reductase activity in the C-terminal domain, which allows electron transfer from NADPH to the heme iron of the cytochrome P450 N-terminal domain (PubMed:3106359, PubMed:1727637, PubMed:16566047, PubMed:7578081, PubMed:11695892, PubMed:14653735, PubMed:16403573, PubMed:18004886, PubMed:17077084, PubMed:17868686, PubMed:18298086, PubMed:18619466, PubMed:18721129, PubMed:19492389, PubMed:20180779, PubMed:21110374, PubMed:21875028). Involved in inactivation of quorum sensing signals of other competing bacteria by oxidazing efficiently acyl homoserine lactones (AHLs), molecules involved in quorum sensing signaling pathways, and their lactonolysis products acyl homoserines (AHs) (PubMed:18020460).<ref>PMID:11695892</ref> <ref>PMID:14653735</ref> <ref>PMID:16403573</ref> <ref>PMID:16566047</ref> <ref>PMID:17077084</ref> <ref>PMID:1727637</ref> <ref>PMID:17868686</ref> <ref>PMID:18004886</ref> <ref>PMID:18020460</ref> <ref>PMID:18298086</ref> <ref>PMID:18619466</ref> <ref>PMID:18721129</ref> <ref>PMID:19492389</ref> <ref>PMID:20180779</ref> <ref>PMID:21110374</ref> <ref>PMID:21875028</ref> <ref>PMID:3106359</ref> <ref>PMID:7578081</ref> | |||
== Evolutionary Conservation == | |||
[[Image:Consurf_key_small.gif|200px|right]] | |||
Check<jmol> | |||
<jmolCheckbox> | |||
<scriptWhenChecked>; select protein; define ~consurf_to_do selected; consurf_initial_scene = true; script "/wiki/ConSurf/hf/3hf2_consurf.spt"</scriptWhenChecked> | |||
<scriptWhenUnchecked>script /wiki/extensions/Proteopedia/spt/initialview01.spt</scriptWhenUnchecked> | |||
<text>to colour the structure by Evolutionary Conservation</text> | |||
</jmolCheckbox> | |||
</jmol>, as determined by [http://consurfdb.tau.ac.il/ ConSurfDB]. You may read the [[Conservation%2C_Evolutionary|explanation]] of the method and the full data available from [http://bental.tau.ac.il/new_ConSurfDB/main_output.php?pdb_ID=3hf2 ConSurf]. | |||
<div style="clear:both"></div> | |||
<div style="background-color:#fffaf0;"> | |||
== Publication Abstract from PubMed == | |||
The power of proline: Bold amino acid substitutions in sensitive protein regions are frequently unproductive, while more subtle mutations can be sufficient to bring about dramatic changes. But introducing proline at the residue next to the sulfur ligand in P450(BM3) (CYP102A1) has the unexpected and desirable effect of enhancing the activity of this fatty acid hydroxylase with a broad range of non-natural substrates, as illustrated by the figure. | |||
A Highly Active Single-Mutation Variant of P450(BM3) (CYP102A1).,Whitehouse CJ, Bell SG, Yang W, Yorke JA, Blanford CF, Strong AJ, Morse EJ, Bartlam M, Rao Z, Wong LL Chembiochem. 2009 Jun 2;10(10):1654-1656. PMID:19492389<ref>PMID:19492389</ref> | |||
From MEDLINE®/PubMed®, a database of the U.S. National Library of Medicine.<br> | |||
</div> | |||
<div class="pdbe-citations 3hf2" style="background-color:#fffaf0;"></div> | |||
==See Also== | |||
*[[Cytochrome P450 3D structures|Cytochrome P450 3D structures]] | |||
== References == | |||
<references/> | |||
__TOC__ | |||
</StructureSection> | |||
== | [[Category: Large Structures]] | ||
[[Category: Priestia megaterium]] | |||
[[Category: Bartlam M]] | |||
== | [[Category: Bell SG]] | ||
< | [[Category: Rao Z]] | ||
[[Category: | [[Category: Whitehouse CJC]] | ||
[[Category: | [[Category: Wong LL]] | ||
[[Category: Bartlam | [[Category: Yang W]] | ||
[[Category: Bell | |||
[[Category: Rao | |||
[[Category: Whitehouse | |||
[[Category: Wong | |||
[[Category: Yang | |||
Latest revision as of 18:48, 1 November 2023
Crystal structure of the I401P mutant of cytochrome P450 BM3Crystal structure of the I401P mutant of cytochrome P450 BM3
Structural highlights
FunctionCPXB_PRIM2 Functions as a fatty acid monooxygenase (PubMed:3106359, PubMed:1727637, PubMed:16566047, PubMed:7578081, PubMed:11695892, PubMed:14653735, PubMed:16403573, PubMed:18004886, PubMed:17077084, PubMed:17868686, PubMed:18298086, PubMed:18619466, PubMed:18721129, PubMed:19492389, PubMed:20180779, PubMed:21110374, PubMed:21875028). Catalyzes hydroxylation of fatty acids at omega-1, omega-2 and omega-3 positions (PubMed:1727637, PubMed:21875028). Shows activity toward medium and long-chain fatty acids, with optimum chain lengths of 12, 14 and 16 carbons (lauric, myristic, and palmitic acids). Able to metabolize some of these primary metabolites to secondary and tertiary products (PubMed:1727637). Marginal activity towards short chain lengths of 8-10 carbons (PubMed:1727637, PubMed:18619466). Hydroxylates highly branched fatty acids, which play an essential role in membrane fluidity regulation (PubMed:16566047). Also displays a NADPH-dependent reductase activity in the C-terminal domain, which allows electron transfer from NADPH to the heme iron of the cytochrome P450 N-terminal domain (PubMed:3106359, PubMed:1727637, PubMed:16566047, PubMed:7578081, PubMed:11695892, PubMed:14653735, PubMed:16403573, PubMed:18004886, PubMed:17077084, PubMed:17868686, PubMed:18298086, PubMed:18619466, PubMed:18721129, PubMed:19492389, PubMed:20180779, PubMed:21110374, PubMed:21875028). Involved in inactivation of quorum sensing signals of other competing bacteria by oxidazing efficiently acyl homoserine lactones (AHLs), molecules involved in quorum sensing signaling pathways, and their lactonolysis products acyl homoserines (AHs) (PubMed:18020460).[1] [2] [3] [4] [5] [6] [7] [8] [9] [10] [11] [12] [13] [14] [15] [16] [17] [18] Evolutionary Conservation![]() Check, as determined by ConSurfDB. You may read the explanation of the method and the full data available from ConSurf. Publication Abstract from PubMedThe power of proline: Bold amino acid substitutions in sensitive protein regions are frequently unproductive, while more subtle mutations can be sufficient to bring about dramatic changes. But introducing proline at the residue next to the sulfur ligand in P450(BM3) (CYP102A1) has the unexpected and desirable effect of enhancing the activity of this fatty acid hydroxylase with a broad range of non-natural substrates, as illustrated by the figure. A Highly Active Single-Mutation Variant of P450(BM3) (CYP102A1).,Whitehouse CJ, Bell SG, Yang W, Yorke JA, Blanford CF, Strong AJ, Morse EJ, Bartlam M, Rao Z, Wong LL Chembiochem. 2009 Jun 2;10(10):1654-1656. PMID:19492389[19] From MEDLINE®/PubMed®, a database of the U.S. National Library of Medicine. See AlsoReferences
|
|